Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-22417

createDataFrame from a pandas.DataFrame reads datetime64 values as longs

Attach filesAttach ScreenshotVotersWatch issueWatchersCreate sub-taskLinkCloneUpdate Comment AuthorReplace String in CommentUpdate Comment VisibilityDelete Comments
    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Major
    • Resolution: Fixed
    • 2.2.0
    • 2.2.1, 2.3.0
    • PySpark
    • None

    Description

      When trying to create a Spark DataFrame from an existing Pandas DataFrame using createDataFrame, columns with datetime64 values are converted as long values. This is only when the schema is not specified.

      In [2]: import pandas as pd
         ...: from datetime import datetime
         ...: 
      
      In [3]: pdf = pd.DataFrame({"ts": [datetime(2017, 10, 31, 1, 1, 1)]})
      
      In [4]: df = spark.createDataFrame(pdf)
      
      In [5]: df.show()
      +-------------------+
      |                 ts|
      +-------------------+
      |1509411661000000000|
      +-------------------+
      
      
      In [6]: df.schema
      Out[6]: StructType(List(StructField(ts,LongType,true)))
      

      Spark should interpret a datetime64[D] value to DateType and other datetime64 values to TImestampType.

      Attachments

        Issue Links

        Activity

          This comment will be Viewable by All Users Viewable by All Users
          Cancel

          People

            bryanc Bryan Cutler
            bryanc Bryan Cutler
            Votes:
            0 Vote for this issue
            Watchers:
            5 Start watching this issue

            Dates

              Created:
              Updated:
              Resolved:

              Slack

                Issue deployment