Uploaded image for project: 'Xerces-C++'
  1. Xerces-C++
  2. XERCESC-866

ERROR: The buffer manager cannot provide any more buffers

    XMLWordPrintableJSON

    Details

    • Type: Bug
    • Status: Closed
    • Priority: Blocker
    • Resolution: Fixed
    • Affects Version/s: 2.2.0
    • Fix Version/s: 2.6.0
    • Component/s: Miscellaneous
    • Labels:
      None
    • Environment:
      Operating System: Solaris
      Platform: Sun
    • Bugzilla Id:
      19156

      Description

      I receive the following error when attempting to parse a file with
      a deep nesting of elements (MathML). This file validates fine using XMLSpy.

      /usr/local/src/xerces-c2_2_0-Sol2.7ForCC/bin/SAX2Count test.xml
      Fatal Error at file /tmp/xmltest/test.xml, line 48, char 917
      Message: An exception occurred! Type:RuntimeException, Message:The buffer
      manager cannot provide any more buffers

      I'm including the XML that generates this error. Any help is appreciated.

      Thanks,
      David
      --------
      XML:

      <?xml version = "1.0" encoding = "UTF-8" standalone="no" ?>
      <!DOCTYPE euclid_issue SYSTEM
      "http://ProjectEuclid.org/Dienst/htdocs/euclid/dtds/euclid_issue.dtd">
      <euclid_issue version = "1.3">
      <header>
      <issue_identifier>jor ABC, vol 2, iss 3-4 (1997)</issue_identifier>
      <timestamp>200304071929032</timestamp>
      <euclid_journal_id>Test Data</euclid_journal_id>
      <contact>
      <contact_name>David Fielding</contact_name>
      <email>dlf2@cornell.edu</email>
      <phone>345-0000</phone>
      </contact>
      </header>
      <issue>
      <issue_data>
      <journal_vol_number>2</journal_vol_number>
      <issue_number label = "Number">3-4</issue_number>
      <issue_publ_date iso8601 = "1997" type = "print">1997</issue_publ_date>
      <start_page>185</start_page>
      <end_page>315</end_page>
      </issue_data>
      <record>
      <identifiers>
      <identifier type = "pii">S1080033X</identifier>
      <identifier type = "doi">14.55/S13X</identifier>
      </identifiers>
      <title>A result test eigenvalue</title>
      <author order = "1">
      <name>
      <given_name>P.</given_name>
      <surname>Dek</surname>
      </name>
      </author>
      <author order = "2">
      <name>
      <given_name>A.</given_name>
      <surname>Eil</surname>
      </name>
      </author>
      <author order = "3">
      <name>
      <given_name>A.</given_name>
      <surname>Toni</surname>
      </name>
      </author>
      <abstract>
      <p>We study bifurcation in any bounded
      domain <math alttext="$\Omega$"><mi>Ω</mi></math> in <math
      alttext="$\mathbb

      {R}

      ^N$"><mrow><msup><mi>ℝ</mi><mi>N</mi></msup></mrow></math>:
      <math display="block" alttext="$$\begin

      {cases}A_pu :=
      -\sum^N_{i,j=1}\frac{\partial}{\partial x_i}[(\sum^N_{m,k=1}a_{mk}(x)\frac{\partial u}{\partial x_m}\frac{\partial u}{\partial x_k})^{\frac{p-2}{2}}a_{ij}\frac{partial u}{\partial x_j}]=\lambda g|u|^{p-2}u + f(x,u,\lambda),u\in
      W_0^{1,p}(\Omega)\end{cases}

      $$"><mrow><mrow><mo>{</mo><mtable
      columnalign="left"><mtr><mtd><msub><mi>A</mi><mi>p</mi></msub><mi>u</mi><mo>:</mo><mo>=</mo><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><mfrac><mo>∂</mo><mrow><mo>∂</mo><msub><mi>x</mi><mi>i</mi></msub></mrow></mfrac><mrow><mo></mo><mrow><msup><mrow><mrow><mo>(</mo><mrow><munderover><mo>&#8721;</mo><mrow><mi>m</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><msub><mi>a</mi><mrow><mi>m</mi><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>&#8706;</mo><mi>u</mi></mrow><mrow><mo>&#8706;</mo><msub><mi>x</mi><mi>m</mi></msub></mrow></mfrac><mfrac><mrow><mo>&#8706;</mo><mi>u</mi></mrow><mrow><mo>&#8706;</mo><msub><mi>x</mi><mi>k</mi></msub></mrow></mfrac></mrow></mrow><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mi>p</mi><mo>&#8722;</mo><mn>2</mn></mrow><mn>2</mn></mfrac></mrow></msup><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>&#8706;</mo><mi>u</mi></mrow><mrow><mo>&#8706;</mo><msub><mi>x</mi><mi>j</mi></msub></mrow></mfrac></mrow><mo></mo></mrow><mo>=</mo></mrow></mtd></mtr><mtr><mtd><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>λ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>λ</mi></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mrow></mrow></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mi>W</mi><mn>0</mn><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math>.
      We prove that the principal eigenvalue <math
      alttext="$\lambda_1$"><msub><mi>λ</mi><mn>1</mn></msub></math> of the
      eigenvalue problem <math display="block" alttext="$$\begin

      {cases}A_pu =\lambda
      g|u|^{p-2}u,u\in
      W_0^{1,p}(\Omega),\end{cases}

      $$"><mrow><mrow><mo>{</mo><mtable
      columnalign="left"><mtr><mtd><msub><mi>A</mi><mi>p</mi></msub><mi>u</mi><mo>=</mo><mi>λ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mi>W</mi><mn>0</mn><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math>
      is a bifurcation point of the problem mentioned above.</p>
      </abstract>
      <keywords>
      <keyword>indefinite</keyword>
      </keywords>
      <subjects>
      <subject scheme = "msc1991" rank = "primary">35B36</subject>
      <subject scheme = "msc1991" rank = "primary"> 35J34</subject>
      <subject scheme = "msc1991" rank = "secondary"> 35P34</subject>
      </subjects>
      <start_page>155</start_page>
      <end_page>165</end_page>
      <record_filename filetype = "pdfview">S1.pdf</record_filename>
      <record_filename filetype = "tex">S1.ref</record_filename>
      </record>
      </issue>
      </euclid_issue>

        Attachments

          Activity

            People

            • Assignee:
              Unassigned
              Reporter:
              dlf2@cornell.edu dlf2
            • Votes:
              0 Vote for this issue
              Watchers:
              0 Start watching this issue

              Dates

              • Created:
                Updated:
                Resolved: