Details
-
Bug
-
Status: Closed
-
Major
-
Resolution: Fixed
-
SystemML 0.9, SystemML 0.10
-
None
-
None
Description
Interesting bug, as of commit e16fe1d :
Start by creating a random matrix X, multiplying it by 2 and assigning to a variable dX, and then print the results:
# Generate data N = 3 D = 2 X = rand(rows=N, cols=D) # Function dX = 2 * X # Print elements of dX for (i in 1:nrow(dX)) { for (j in 1:ncol(dX)) { print("dX["+i+","+j+"]: " + as.scalar(dX[i,j])) } } print("") print("") print("") print("")
Output:
dX[1,1]: 1.0743268190621265 dX[1,2]: 1.403590780383033 dX[2,1]: 1.9404746268735837 dX[2,2]: 0.8689030633611705 dX[3,1]: 0.2589227727050818 dX[3,2]: 0.342402157694327
Now, copy and paste the assignment to dX and the print statement, thus literally repeating the same code again.
# Generate data N = 3 D = 2 X = rand(rows=N, cols=D) # Function dX = 2 * X # Print elements of dX for (i in 1:nrow(dX)) { for (j in 1:ncol(dX)) { print("dX["+i+","+j+"]: " + as.scalar(dX[i,j])) } } print("") # Function dX = 2 * X # Print elements of dX for (i in 1:nrow(dX)) { for (j in 1:ncol(dX)) { print("dX["+i+","+j+"]: " + as.scalar(dX[i,j])) } } print("") print("") print("") print("")
Output:
dX[1,1]: 1.5299997333070705 dX[1,2]: 1.951679510186853 dX[2,1]: 0.9372371721327426 dX[2,2]: 0.11462997451231827 dX[3,1]: 0.3913879515630596 dX[3,2]: 0.4411374996556454 dX[1,1]: 0.15757825641372136 dX[1,2]: 1.6331143898957619 dX[2,1]: 0.7271506546939133 dX[2,2]: 0.648694276576909 dX[3,1]: 1.4763697903577369 dX[3,2]: 1.2645782773949483
Notice that the outputs are different... magic!
Attachments
Issue Links
- relates to
-
SYSTEMDS-587 Improvements Triggered By Deep Learning Work
- In Progress