Details
Description
After upgraded the cluster from spark 1.3.1 to 1.4.0(rc4), I encountered the following exception when use concat with UDF in where clause:
org.apache.spark.sql.catalyst.analysis.UnresolvedException: Invalid call to dataType on unresolved object, tree: 'concat(HiveSimpleUdf#org.apache.hadoop.hive.ql.udf.UDFYear(date#1776),年) at org.apache.spark.sql.catalyst.analysis.UnresolvedFunction.dataType(unresolved.scala:82) at org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion$InConversion$$anonfun$apply$5$$anonfun$applyOrElse$15.apply(HiveTypeCoercion.scala:299) at org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion$InConversion$$anonfun$apply$5$$anonfun$applyOrElse$15.apply(HiveTypeCoercion.scala:299) at scala.collection.LinearSeqOptimized$class.exists(LinearSeqOptimized.scala:80) at scala.collection.immutable.List.exists(List.scala:84) at org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion$InConversion$$anonfun$apply$5.applyOrElse(HiveTypeCoercion.scala:299) at org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion$InConversion$$anonfun$apply$5.applyOrElse(HiveTypeCoercion.scala:298) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:221) at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:75) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:85) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) at scala.collection.AbstractIterator.to(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:94) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:64) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformAllExpressions$1.applyOrElse(QueryPlan.scala:136) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformAllExpressions$1.applyOrElse(QueryPlan.scala:135) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:221) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:242) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) at scala.collection.AbstractIterator.to(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:227) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:242) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) at scala.collection.AbstractIterator.to(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:227) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:212) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformAllExpressions(QueryPlan.scala:135) at org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion$InConversion$.apply(HiveTypeCoercion.scala:298) at org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion$InConversion$.apply(HiveTypeCoercion.scala:297) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:61) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:59) at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111) at scala.collection.immutable.List.foldLeft(List.scala:84) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:59) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:51) at scala.collection.immutable.List.foreach(List.scala:318) at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:51) at org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:922) at org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:922) at org.apache.spark.sql.SQLContext$QueryExecution.assertAnalyzed(SQLContext.scala:920) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:131) at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:51) at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:744) at test.service.SparkHiveService.query(SparkHiveService.scala:79) ... at java.lang.Thread.run(Thread.java:745)
The SQL is:
select * from test where concat(year(date), '年') in ( '2015年', '2014年' ) limit 10
This SQL can be run in spark 1.3.1 but error in spark 1.4. I've tried run some similar sql in spark 1.4.0, found the following sql could be run correctly:
select * from test where concat(year(date), '年') = '2015年' limit 10
select * from test where concat(sex, 'T') in ( 'MT' ) limit 10
In short, when I use 'concat', UDF and 'in' together in sql, I will get the exception: Invalid call to dataType on unresolved object.
Attachments
Issue Links
- links to