Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Workaround
-
3.3.2, 3.4.0
-
None
-
None
Description
Hello,
I have an issue with Spark 3.3.2 & Spark 3.4.0 to write into Azure Data Lake Storage Gen2 (abfs/abfss scheme). I've got the following errors:
warn 13:12:47.554: StdErr from Kernel Process 23/04/19 13:12:47 ERROR FileFormatWriter: Aborting job 6a75949c-1473-4445-b8ab-d125be3f0f21.org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 0.0 failed 1 times, most recent failure: Lost task 1.0 in stage 0.0 (TID 1) (myhost executor driver): org.apache.hadoop.util.DiskChecker$DiskErrorException: Could not find any valid local directory for datablock-0001- at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.getLocalPathForWrite(LocalDirAllocator.java:462) at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:165) at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:146) at org.apache.hadoop.fs.store.DataBlocks$DiskBlockFactory.createTmpFileForWrite(DataBlocks.java:980) at org.apache.hadoop.fs.store.DataBlocks$DiskBlockFactory.create(DataBlocks.java:960) at org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.createBlockIfNeeded(AbfsOutputStream.java:262) at org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.<init>(AbfsOutputStream.java:173) at org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.createFile(AzureBlobFileSystemStore.java:580) at org.apache.hadoop.fs.azurebfs.AzureBlobFileSystem.create(AzureBlobFileSystem.java:301) at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:1195) at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:1175) at org.apache.parquet.hadoop.util.HadoopOutputFile.create(HadoopOutputFile.java:74) at org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:347) at org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:314) at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:480) at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:420) at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:409) at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.<init>(ParquetOutputWriter.scala:36) at org.apache.spark.sql.execution.datasources.parquet.ParquetUtils$$anon$1.newInstance(ParquetUtils.scala:490) at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:161) at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:146) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:389) at org.apache.spark.sql.execution.datasources.WriteFilesExec.$anonfun$doExecuteWrite$1(WriteFiles.scala:100) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:888) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:888) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364) at org.apache.spark.rdd.RDD.iterator(RDD.scala:328) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) at org.apache.spark.scheduler.Task.run(Task.scala:139) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2785) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2721) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2720) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2720) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1206) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1206) at scala.Option.foreach(Option.scala:407) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1206) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2984) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2923) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2912) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:971) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2263) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$executeWrite$4(FileFormatWriter.scala:307) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.writeAndCommit(FileFormatWriter.scala:271) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeWrite(FileFormatWriter.scala:304) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:190) at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:190) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111) at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:98) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:118) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:195) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:103) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:94) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:512) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:104) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:512) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:31) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:488) at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94) at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:81) at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79) at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:133) at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:856) at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:387) at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:360) at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:239) at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:789) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) at py4j.ClientServerConnection.run(ClientServerConnection.java:106) at java.lang.Thread.run(Thread.java:748)Caused by: org.apache.hadoop.util.DiskChecker$DiskErrorException: Could not find any valid local directory for datablock-0001- at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.getLocalPathForWrite(LocalDirAllocator.java:462) at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:165) at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:146) at org.apache.hadoop.fs.store.DataBlocks$DiskBlockFactory.createTmpFileForWrite(DataBlocks.java:980) at org.apache.hadoop.fs.store.DataBlocks$DiskBlockFactory.create(DataBlocks.java:960) at org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.createBlockIfNeeded(AbfsOutputStream.java:262) at org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.<init>(AbfsOutputStream.java:173) at org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.createFile(AzureBlobFileSystemStore.java:580) at org.apache.hadoop.fs.azurebfs.AzureBlobFileSystem.create(AzureBlobFileSystem.java:301) at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:1195) at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:1175) at org.apache.parquet.hadoop.util.HadoopOutputFile.create(HadoopOutputFile.java:74) at org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:347) at org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:314) at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:480) at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:420) at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:409) at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.<init>(ParquetOutputWriter.scala:36) at org.apache.spark.sql.execution.datasources.parquet.ParquetUtils$$anon$1.newInstance(ParquetUtils.scala:490) at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:161) at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:146) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:389) at org.apache.spark.sql.execution.datasources.WriteFilesExec.$anonfun$doExecuteWrite$1(WriteFiles.scala:100) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:888) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:888) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364) at org.apache.spark.rdd.RDD.iterator(RDD.scala:328) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) at org.apache.spark.scheduler.Task.run(Task.scala:139) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ... 1 more
Before that, I was able to write into Azure Data Lake Storage with Spark 3.1.2 with hadoop-azure 3.2.1 without encountering this error.
Here's what I have tried but with no success:
- Spark 3.3.2 with hadoop-azure 3.3.2
- Spark 3.3.2 with hadoop-azure 3.3.5
- Spark 3.4.0 with hadoop-azure 3.3.4
- Spark 3.4.0 with hadoop-azure 3.3.5
Regards,
Attachments
Issue Links
- is blocked by
-
HADOOP-18707 Cannot write to Azure Datalake Gen2 (abfs/abfss) after Spark 3.1.2
- Resolved
- is caused by
-
HADOOP-17195 Intermittent OutOfMemory error while performing hdfs CopyFromLocal to abfs
- Resolved