Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-42747

Fix incorrect internal status of LoR and AFT

    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Major
    • Resolution: Fixed
    • 3.1.0, 3.2.0, 3.3.0, 3.4.0
    • 3.2.4, 3.3.2, 3.4.1, 3.5.0
    • ML, PySpark
    • None

    Description

      LoR and AFT applied internal status to optimize prediction/transform, but the status is not correctly updated in some case:

      from pyspark.sql import Row
      from pyspark.ml.classification import *
      from pyspark.ml.linalg import Vectors
      
      df = spark.createDataFrame(
          [
              (1.0, 1.0, Vectors.dense(0.0, 5.0)),
              (0.0, 2.0, Vectors.dense(1.0, 2.0)),
              (1.0, 3.0, Vectors.dense(2.0, 1.0)),
              (0.0, 4.0, Vectors.dense(3.0, 3.0)),
          ],
          ["label", "weight", "features"],
      )
      
      lor = LogisticRegression(weightCol="weight")
      model = lor.fit(df)
      
      # status changes 1
      for t in [0.0, 0.1, 0.2, 0.5, 1.0]:
          model.setThreshold(t).transform(df)
      
      # status changes 2
      [model.setThreshold(t).predict(Vectors.dense(0.0, 5.0)) for t in [0.0, 0.1, 0.2, 0.5, 1.0]]
      
      for t in [0.0, 0.1, 0.2, 0.5, 1.0]:
          print(t)
          model.setThreshold(t).transform(df).show()                                        #  <- error results
      

      results:

      0.0
      +-----+------+---------+--------------------+--------------------+----------+
      |label|weight| features|       rawPrediction|         probability|prediction|
      +-----+------+---------+--------------------+--------------------+----------+
      |  1.0|   1.0|[0.0,5.0]|[0.10932013376341...|[0.52730284774069...|       0.0|
      |  0.0|   2.0|[1.0,2.0]|[-0.8619624039359...|[0.29692950635762...|       0.0|
      |  1.0|   3.0|[2.0,1.0]|[-0.3634508721860...|[0.41012446452385...|       0.0|
      |  0.0|   4.0|[3.0,3.0]|[2.33975176373760...|[0.91211618852612...|       0.0|
      +-----+------+---------+--------------------+--------------------+----------+
      
      0.1
      +-----+------+---------+--------------------+--------------------+----------+
      |label|weight| features|       rawPrediction|         probability|prediction|
      +-----+------+---------+--------------------+--------------------+----------+
      |  1.0|   1.0|[0.0,5.0]|[0.10932013376341...|[0.52730284774069...|       0.0|
      |  0.0|   2.0|[1.0,2.0]|[-0.8619624039359...|[0.29692950635762...|       0.0|
      |  1.0|   3.0|[2.0,1.0]|[-0.3634508721860...|[0.41012446452385...|       0.0|
      |  0.0|   4.0|[3.0,3.0]|[2.33975176373760...|[0.91211618852612...|       0.0|
      +-----+------+---------+--------------------+--------------------+----------+
      
      0.2
      +-----+------+---------+--------------------+--------------------+----------+
      |label|weight| features|       rawPrediction|         probability|prediction|
      +-----+------+---------+--------------------+--------------------+----------+
      |  1.0|   1.0|[0.0,5.0]|[0.10932013376341...|[0.52730284774069...|       0.0|
      |  0.0|   2.0|[1.0,2.0]|[-0.8619624039359...|[0.29692950635762...|       0.0|
      |  1.0|   3.0|[2.0,1.0]|[-0.3634508721860...|[0.41012446452385...|       0.0|
      |  0.0|   4.0|[3.0,3.0]|[2.33975176373760...|[0.91211618852612...|       0.0|
      +-----+------+---------+--------------------+--------------------+----------+
      
      0.5
      +-----+------+---------+--------------------+--------------------+----------+
      |label|weight| features|       rawPrediction|         probability|prediction|
      +-----+------+---------+--------------------+--------------------+----------+
      |  1.0|   1.0|[0.0,5.0]|[0.10932013376341...|[0.52730284774069...|       0.0|
      |  0.0|   2.0|[1.0,2.0]|[-0.8619624039359...|[0.29692950635762...|       0.0|
      |  1.0|   3.0|[2.0,1.0]|[-0.3634508721860...|[0.41012446452385...|       0.0|
      |  0.0|   4.0|[3.0,3.0]|[2.33975176373760...|[0.91211618852612...|       0.0|
      +-----+------+---------+--------------------+--------------------+----------+
      
      1.0
      +-----+------+---------+--------------------+--------------------+----------+
      |label|weight| features|       rawPrediction|         probability|prediction|
      +-----+------+---------+--------------------+--------------------+----------+
      |  1.0|   1.0|[0.0,5.0]|[0.10932013376341...|[0.52730284774069...|       0.0|
      |  0.0|   2.0|[1.0,2.0]|[-0.8619624039359...|[0.29692950635762...|       0.0|
      |  1.0|   3.0|[2.0,1.0]|[-0.3634508721860...|[0.41012446452385...|       0.0|
      |  0.0|   4.0|[3.0,3.0]|[2.33975176373760...|[0.91211618852612...|       0.0|
      +-----+------+---------+--------------------+--------------------+----------+
      
      

      Attachments

        Activity

          People

            podongfeng Ruifeng Zheng
            podongfeng Ruifeng Zheng
            Votes:
            0 Vote for this issue
            Watchers:
            2 Start watching this issue

            Dates

              Created:
              Updated:
              Resolved: