Description
import pandas as pd from pyspark.sql.types import DoubleType from sklearn.isotonic import IsotonicRegression as IsotonicRegression_sklearn from pyspark.ml.regression import IsotonicRegression as IsotonicRegression_pyspark # The P(positives | model_score): # 0.6 -> 0.5 (1 out of the 2 labels is positive) # 0.333 -> 0.333 (1 out of the 3 labels is positive) # 0.20 -> 0.25 (1 out of the 4 labels is positive) tc_pd = pd.DataFrame({ "model_score": [0.6, 0.6, 0.333, 0.333, 0.333, 0.20, 0.20, 0.20, 0.20], "label": [1, 0, 0, 1, 0, 1, 0, 0, 0], "weight": 1, } ) # The fraction of positives for each of the distinct model_scores would be the best fit. # Resulting in the following expected calibrated model_scores: # "calibrated_model_score": [0.5, 0.5, 0.333, 0.333, 0.333, 0.25, 0.25, 0.25, 0.25] # The sklearn implementation of Isotonic Regression. from sklearn.isotonic import IsotonicRegression as IsotonicRegression_sklearn tc_regressor_sklearn = IsotonicRegression_sklearn().fit(X=tc_pd['model_score'], y=tc_pd['label'], sample_weight=tc_pd['weight']) print("sklearn:", tc_regressor_sklearn.predict(tc_pd['model_score'])) # >> sklearn: [0.5 0.5 0.33333333 0.33333333 0.33333333 0.25 0.25 0.25 0.25 ] # The pyspark implementation of Isotonic Regression. tc_df = spark.createDataFrame(tc_pd) tc_df = tc_df.withColumn('model_score', F.col('model_score').cast(DoubleType())) isotonic_regressor_pyspark = IsotonicRegression_pyspark(featuresCol='model_score', labelCol='label', weightCol='weight') tc_model = isotonic_regressor_pyspark.fit(tc_df) tc_pd = tc_model.transform(tc_df).toPandas() print("pyspark:", tc_pd['prediction'].values) # >> pyspark: [0.5 0.5 0.33333333 0.33333333 0.33333333 0. 0. 0. 0. ] # The result from the pyspark implementation seems unclear. Similar small toy examples lead to similar non-expected results for the pyspark implementation. # Strangely enough, for 'large' datasets, the difference between calibrated model_scores generated by both implementations dissapears.