Details
-
Bug
-
Status: Open
-
Major
-
Resolution: Unresolved
-
3.3.0
-
None
-
None
-
Spark 3.3.0
Description
Got an error when casting a big enough long to a timestamp, should get the max timestamp according to the code in `Cast.scala`:
private[this] def longToTimestamp(t: Long): Long = SECONDS.toMicros(t) // the logic of SECONDS.toMicros is: static long x(long d, long m, long over) { if (d > Long.MAX_VALUE / 1000000L) return Long.MAX_VALUE; if (d < -(Long.MAX_VALUE / 1000000L)) return Long.MIN_VALUE; return d * m; }
Reproduce steps:
$SPARK_HOME/bin/spark-shell import spark.implicits._ val df = Seq((Long.MaxValue / 1000000) + 1).toDF("a") df.selectExpr("cast(a as timestamp)").collect() // the result is right Array[org.apache.spark.sql.Row] = Array([294247-01-10 12:00:54.775807]) import org.apache.spark.sql.types._ import org.apache.spark.sql.Row val schema = StructType(Array(StructField("a", LongType))) val data = Seq(Row((Long.MaxValue / 1000000) + 1)) val df = spark.createDataFrame(spark.sparkContext.parallelize(data), schema) df.selectExpr("cast(a as timestamp)").collect() // ANSI or non-ANSI, both throws error // spark.conf.set("spark.sql.ansi.enabled", true) // spark.conf.set("spark.sql.ansi.enabled", false) // error occurs: java.lang.RuntimeException: Error while decoding: java.lang.ArithmeticException: long overflow createexternalrow(staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, ObjectType(class java.sql.Timestamp), toJavaTimestamp, input[0, timestamp, true], true, false), StructField(a,TimestampType,true)) at org.apache.spark.sql.errors.QueryExecutionErrors$.expressionDecodingError(QueryExecutionErrors.scala:1047) at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Deserializer.apply(ExpressionEncoder.scala:184) at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Deserializer.apply(ExpressionEncoder.scala:172) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:198) at scala.collection.TraversableLike.map(TraversableLike.scala:286) at scala.collection.TraversableLike.map$(TraversableLike.scala:279) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:198) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715) at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:2971) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704) at org.apache.spark.sql.Dataset.collect(Dataset.scala:2971) ... 51 elided Caused by: java.lang.ArithmeticException: long overflow at java.lang.Math.multiplyExact(Math.java:892) at org.apache.spark.sql.catalyst.util.DateTimeUtils$.millisToMicros(DateTimeUtils.scala:213) at org.apache.spark.sql.catalyst.util.RebaseDateTime$.rebaseGregorianToJulianMicros(RebaseDateTime.scala:362) at org.apache.spark.sql.catalyst.util.RebaseDateTime$.rebaseGregorianToJulianMicros(RebaseDateTime.scala:386) at org.apache.spark.sql.catalyst.util.DateTimeUtils$.toJavaTimestamp(DateTimeUtils.scala:146) at org.apache.spark.sql.catalyst.util.DateTimeUtils.toJavaTimestamp(DateTimeUtils.scala) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificSafeProjection.apply(Unknown Source) at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Deserializer.apply(ExpressionEncoder.scala:181) ... 69 more
Another similar issue when casting a float to a timestamp
The code should not overflow in non-ANSI mode:
if (d.isNaN || d.isInfinite) null else (d * MICROS_PER_SECOND).toLong
Reproduce steps:
import org.apache.spark.sql.types._ import org.apache.spark.sql.Row val data = Seq( Row((Long.MaxValue / 1000000 + 100).toDouble), Row((-(Long.MaxValue / 1000000) - 100).toDouble)) val schema = StructType(Array(StructField("a", DoubleType))) val df = spark.createDataFrame(spark.sparkContext.parallelize(data), schema) df.selectExpr("cast(a as timestamp)").collect() // Error java.lang.RuntimeException: Error while decoding: java.lang.ArithmeticException: long overflow createexternalrow(staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, ObjectType(class java.sql.Timestamp), toJavaTimestamp, input[0, timestamp, true], true, false), StructField(a,TimestampType,true)) at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Deserializer.apply(ExpressionEncoder.scala:186) at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Deserializer.apply(ExpressionEncoder.scala:173) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:198) at scala.collection.TraversableLike.map(TraversableLike.scala:238) at scala.collection.TraversableLike.map$(TraversableLike.scala:231) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:198) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3696) at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:2965) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3687) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3685) at org.apache.spark.sql.Dataset.collect(Dataset.scala:2965) ... 51 elided Caused by: java.lang.ArithmeticException: long overflow at java.lang.Math.multiplyExact(Math.java:892) at org.apache.spark.sql.catalyst.util.DateTimeUtils$.millisToMicros(DateTimeUtils.scala:202) at org.apache.spark.sql.catalyst.util.RebaseDateTime$.rebaseGregorianToJulianMicros(RebaseDateTime.scala:361) at org.apache.spark.sql.catalyst.util.RebaseDateTime$.rebaseGregorianToJulianMicros(RebaseDateTime.scala:385) at org.apache.spark.sql.catalyst.util.DateTimeUtils$.toJavaTimestamp(DateTimeUtils.scala:135) at org.apache.spark.sql.catalyst.util.DateTimeUtils.toJavaTimestamp(DateTimeUtils.scala) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificSafeProjection.apply(Unknown Source) at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Deserializer.apply(ExpressionEncoder.scala:182) ... 69 more // But if show, the result is OK. df.selectExpr("cast(a as timestamp)").show(false) +-----------------------------+ |a | +-----------------------------+ |+294247-01-10 12:00:54.775807| |-290308-12-22 04:04:48.224192| +-----------------------------+