Description
If sc. newAPIHadoopRDD() is called from Pyspark using an InputFormat that has a ShortWritable as a field, then the call to newAPIHadoopRDD() fails. The reason is that shortWritable is not explicitly handled by PythonHadoopUtil the way that other numeric writables are (like LongWritable). The result is that the ShortWritable is not converted to an object that can be serialized by spark, and a serialization error occurs. Below is an example stack trace from within the pyspark shell:
>>> rdd = sc.newAPIHadoopRDD(inputFormatClass="[org.elasticsearch.hadoop.mr|http://org.elasticsearch.hadoop.mr/].EsInputFormat", ... keyClass="[org.apache.hadoop.io|http://org.apache.hadoop.io/].NullWritable", ... valueClass="[org.elasticsearch.hadoop.mr|http://org.elasticsearch.hadoop.mr/].LinkedMapWritable", ... conf=conf) 2021-12-08 14:38:40,439 ERROR scheduler.TaskSetManager: task 0.0 in stage 15.0 (TID 31) had a not serializable result: org.apache.hadoop.io.ShortWritable Serialization stack: - object not serializable (class: [org.apache.hadoop.io|http://org.apache.hadoop.io/].ShortWritable, value: 1) - writeObject data (class: java.util.HashMap) - object (class java.util.HashMap, \{price=1}) - field (class: scala.Tuple2, name: _2, type: class java.lang.Object) - object (class scala.Tuple2, (1,\{price=1})) - element of array (index: 0) - array (class [Lscala.Tuple2;, size 1); not retrying Traceback (most recent call last): File "<stdin>", line 4, in <module> File "/home/hduser/spark-3.1.2-bin-hadoop3.2/python/pyspark/context.py", line 853, in newAPIHadoopRDD jconf, batchSize) File "/home/hduser/spark-3.1.2-bin-hadoop3.2/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py", line 1305, in __call__ File "/home/hduser/spark-3.1.2-bin-hadoop3.2/python/pyspark/sql/utils.py", line 111, in deco return f(*a, **kw) File "/home/hduser/spark-3.1.2-bin-hadoop3.2/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py", line 328, in get_return_value py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.newAPIHadoopRDD. : org.apache.spark.SparkException: Job aborted due to stage failure: task 0.0 in stage 15.0 (TID 31) had a not serializable result: org.apache.hadoop.io.ShortWritable Serialization stack: - object not serializable (class: [org.apache.hadoop.io|http://org.apache.hadoop.io/].ShortWritable, value: 1) - writeObject data (class: java.util.HashMap) - object (class java.util.HashMap, \{price=1}) - field (class: scala.Tuple2, name: _2, type: class java.lang.Object) - object (class scala.Tuple2, (1,\{price=1})) - element of array (index: 0) - array (class [Lscala.Tuple2;, size 1) at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2258) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2207) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2206) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2206) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1079) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1079) at scala.Option.foreach(Option.scala:407) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1079) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2445) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2387) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2376) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:868) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2196) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2217) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2236) at org.apache.spark.rdd.RDD.$anonfun$take$1(RDD.scala:1449) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:414) at org.apache.spark.rdd.RDD.take(RDD.scala:1422) at org.apache.spark.api.python.SerDeUtil$.pairRDDToPython(SerDeUtil.scala:173) at org.apache.spark.api.python.PythonRDD$.newAPIHadoopRDD(PythonRDD.scala:385) at org.apache.spark.api.python.PythonRDD.newAPIHadoopRDD(PythonRDD.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:238) at java.lang.Thread.run(Thread.java:748)