Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Not A Problem
-
3.1.2
-
None
-
Ubuntu 20
Spark3.1.2-hadoop3.2
Hadoop 3.1
Description
My spark Job fails with this error:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3) (davben-lubuntu executor 2): java.lang.ClassCastException: cannot assign instance of java.lang.invoke.SerializedLambda to field org.apache.spark.rdd.MapPartitionsRDD.f of type scala.Function3 in instance of org.apache.spark.rdd.MapPartitionsRDD
My OS Linux Ubuntu 20 is in this way organized: I have two user: /home/davben and /home/hadoop. Into hadoop user I have installed hadoop 3.1 and spark-3.1.2-hadoop3.2. Both users refers to java-8-openjdk Java installation. The Spark job is launched from user davben on eclipse IDE in this way:
I create the spark conf and the spark session
System.setProperty("hadoop.home.dir", "/home/hadoop/hadoop"); SparkConf sparkConf = new SparkConf() .setAppName("simple") .setMaster("yarn") .set("spark.executor.memory", "1g") .set("deploy.mode", "cluster") .set("spark.yarn.stagingDir", "hdfs://localhost:9000/user/hadoop/") .set("spark.hadoop.fs.defaultFS","hdfs://localhost:9000") .set("spark.hadoop.yarn.resourcemanager.hostname","localhost") .set("spark.hadoop.yarn.resourcemanager.scheduler.address","localhost:8030") .set("spark.hadoop.yarn.resourcemanager.address ","localhost:8032") .set("spark.hadoop.yarn.resourcemanager.webapp.address","localhost:8088") .set("spark.hadoop.yarn.resourcemanager.admin.address","localhost:8083") SparkSession spark = SparkSession.builder().config(sparkConf).getOrCreate();
Then I create a dataset with two entries:
List<Row> rows = new ArrayList<>(); rows.add(RowFactory.create("a", "b")); rows.add(RowFactory.create("a", "a")); StructType structType = new StructType(); structType = structType.add("edge_1", DataTypes.StringType, false); structType = structType.add("edge_2", DataTypes.StringType, false); ExpressionEncoder<Row> edgeEncoder = RowEncoder.apply(structType); Dataset<Row> edge = spark.createDataset(rows, edgeEncoder);
Then I print the content of the current dataset edge
edge.show();
Then I perform a map transformation on edge that upper cases the values of the two entries and return the result in edge2
Dataset<Row> edge2 = edge.map(new MyFunction2(), edgeEncoder);
The following is the code of MyFunction2
public class MyFunction2 implements MapFunction<Row, Row>, scala.Serializable { private static final long serialVersionUID = 1L; @Override public Row call(Row v1) throws Exception { String el1 = v1.get(0).toString().toUpperCase(); String el2 = v1.get(1).toString().toUpperCase(); return RowFactory.create(el1,el2); } }
Finally I show the content of edge2
edge2.show();
I can confirm that, checking on the hadoop UI a localhost:8088, the job is submitted correctly, and
what sounds strange is that the first show is returned correctly in my console, but the second one fails returning the up mentioned error.