Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-36672

Using value from map in grouping sets result org.apache.spark.sql.AnalysisException

    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Major
    • Resolution: Duplicate
    • 3.1.0
    • None
    • SQL
    • None

    Description

      Steps to reproduce:

      1. create a table with map
        create table test (int_value INT, dims MAP<string, string>) using parquet
      2. Run following query:
        select int_value, count(1)
        from test
        group by int_value, dims.dim_x, dims.dim_y
        grouping sets ( (int_value, dims.dim_x), (int_value, dims.dim_y))

      The call stack:

      org.apache.spark.sql.AnalysisException: dims#34[dim_x] AS dim_x#35 doesn't show up in the GROUP BY list ArrayBuffer(int_value#33 AS int_value#41, dims#34[dim_x] AS dim_x#37 AS dim_x#42, dims#34[dim_y] AS dim_y#38 AS dim_y#43);
      	at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:41)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:92)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$$anonfun$19$$anonfun$apply$49$$anonfun$21.apply(Analyzer.scala:387)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$$anonfun$19$$anonfun$apply$49$$anonfun$21.apply(Analyzer.scala:387)
      	at scala.Option.getOrElse(Option.scala:121)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$$anonfun$19$$anonfun$apply$49.apply(Analyzer.scala:386)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$$anonfun$19$$anonfun$apply$49.apply(Analyzer.scala:385)
      	at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
      	at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
      	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
      	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
      	at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
      	at scala.collection.AbstractTraversable.map(Traversable.scala:104)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$$anonfun$19.apply(Analyzer.scala:385)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$$anonfun$19.apply(Analyzer.scala:384)
      	at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
      	at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
      	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
      	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
      	at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
      	at scala.collection.AbstractTraversable.map(Traversable.scala:104)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$.constructExpand(Analyzer.scala:384)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveGroupingAnalytics$$constructAggregate(Analyzer.scala:448)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$$anonfun$apply$6.applyOrElse(Analyzer.scala:485)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$$anonfun$apply$6.applyOrElse(Analyzer.scala:473)
      	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
      	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
      	at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
      	at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:288)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$.apply(Analyzer.scala:473)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics$.apply(Analyzer.scala:287)
      	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:87)
      	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:84)
      	at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
      	at scala.collection.immutable.List.foldLeft(List.scala:84)
      	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:84)
      	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:76)
      	at scala.collection.immutable.List.foreach(List.scala:381)
      	at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:76)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:124)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:118)
      	at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:103)
      	at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
      	at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
      	at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
      	at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74)
      	at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:641)
      

       

      Attachments

        Issue Links

          Activity

            People

              Unassigned Unassigned
              jhu Jack Hu
              Votes:
              0 Vote for this issue
              Watchers:
              2 Start watching this issue

              Dates

                Created:
                Updated:
                Resolved: