Details
-
Bug
-
Status: Resolved
-
Minor
-
Resolution: Not A Problem
-
3.1.0, 3.1.1
-
None
-
spark 3.1.1
Description
Hi,
This is a followup of the this issue https://issues.apache.org/jira/browse/SPARK-33398 that fixed an exception when loading a model in Spark 3 that trained in Spark2. After incorporating this fix in my project, I ran into another issue which was introduced in the fix https://github.com/apache/spark/pull/30889/files.
While loading my random forest model which was trained in Spark 2.2, I ran into the following exception:
16:03:34 ERROR Instrumentation:73 - java.lang.IllegalArgumentException: nodeData does not exist. Available: treeid, nodedata at org.apache.spark.sql.types.StructType.$anonfun$apply$1(StructType.scala:278) at scala.collection.immutable.Map$Map2.getOrElse(Map.scala:147) at org.apache.spark.sql.types.StructType.apply(StructType.scala:277) at org.apache.spark.ml.tree.EnsembleModelReadWrite$.loadImpl(treeModels.scala:522) at org.apache.spark.ml.classification.RandomForestClassificationModel$RandomForestClassificationModelReader.load(RandomForestClassifier.scala:420) at org.apache.spark.ml.classification.RandomForestClassificationModel$RandomForestClassificationModelReader.load(RandomForestClassifier.scala:410) at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$load$5(Pipeline.scala:277) at org.apache.spark.ml.MLEvents.withLoadInstanceEvent(events.scala:160) at org.apache.spark.ml.MLEvents.withLoadInstanceEvent$(events.scala:155) at org.apache.spark.ml.util.Instrumentation.withLoadInstanceEvent(Instrumentation.scala:42) at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$load$4(Pipeline.scala:277) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:198) at scala.collection.TraversableLike.map(TraversableLike.scala:238) at scala.collection.TraversableLike.map$(TraversableLike.scala:231) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:198) at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$load$3(Pipeline.scala:274) at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191) at scala.util.Try$.apply(Try.scala:213) at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191) at org.apache.spark.ml.Pipeline$SharedReadWrite$.load(Pipeline.scala:268) at org.apache.spark.ml.PipelineModel$PipelineModelReader.$anonfun$load$7(Pipeline.scala:356) at org.apache.spark.ml.MLEvents.withLoadInstanceEvent(events.scala:160) at org.apache.spark.ml.MLEvents.withLoadInstanceEvent$(events.scala:155) at org.apache.spark.ml.util.Instrumentation.withLoadInstanceEvent(Instrumentation.scala:42) at org.apache.spark.ml.PipelineModel$PipelineModelReader.$anonfun$load$6(Pipeline.scala:355) at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191) at scala.util.Try$.apply(Try.scala:213) at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191) at org.apache.spark.ml.PipelineModel$PipelineModelReader.load(Pipeline.scala:355) at org.apache.spark.ml.PipelineModel$PipelineModelReader.load(Pipeline.scala:349) at org.apache.spark.ml.util.MLReadable.load(ReadWrite.scala:355) at org.apache.spark.ml.util.MLReadable.load$(ReadWrite.scala:355) at org.apache.spark.ml.PipelineModel$.load(Pipeline.scala:337)
When I looked at the data for the model, I see the schema is using "nodedata" instead of "nodeData." Here is what my model looks like:
+------+-----------------------------------------------------------------------------------------------------------------+ |treeid|nodedata | +------+-----------------------------------------------------------------------------------------------------------------+ |12 |{0, 1.0, 0.20578590428109744, [249222.0, 1890856.0], 0.046774779237015784, 1, 128, {1, [0.7468856332819338], -1}}| |12 |{1, 1.0, 0.49179982674596906, [173902.0, 224985.0], 0.022860340952237657, 2, 65, {4, [0.6627218934911243], -1}} | |12 |{2, 0.0, 0.4912259578159168, [90905.0, 69638.0], 0.10950848921275999, 3, 34, {9, [0.13666873125270484], -1}} | |12 |{3, 1.0, 0.4308078797704775, [23317.0, 50941.0], 0.04311282777881931, 4, 19, {10, [0.506218002482692], -1}} |
I'm new to spark and the training of this model predates me so I can't say whether specifying the column as "nodedata" was specific to our code or was internal spark code. But I'm suspecting it's internal spark code.
edit:
cc podongfeng, the author of the original PR to support loading spark2 models in spark3. Maybe have some insights on "nodedata" vs "nodeData"