Details
-
Sub-task
-
Status: Resolved
-
Minor
-
Resolution: Fixed
-
3.0.0
-
build from master today nov 14
commit fca0a6c394990b86304a8f9a64bf4c7ec58abbd6 (HEAD -> master, upstream/master, upstream/HEAD)
Author: Kevin Yu <qyu@us.ibm.com>
Date: Thu Nov 14 14:58:32 2019 -0600build using:
$ dev/make-distribution.sh --tgz -Phadoop-2.7 -Dhadoop.version=2.7.4 -Pyarndeployed on AWS EMR 5.28 with 10 m5.xlarge slaves
in spark-env.sh:
HADOOP_CONF_DIR=/etc/hadoop/confin spark-defaults.conf:
spark.master yarn
spark.submit.deployMode client
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.hadoop.yarn.timeline-service.enabled false
spark.driver.extraClassPath /usr/lib/hadoop-lzo/lib/hadoop-lzo.jar
spark.driver.extraLibraryPath /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native
spark.executor.extraClassPath /usr/lib/hadoop-lzo/lib/hadoop-lzo.jar
spark.executor.extraLibraryPath /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/nativebuild from master today nov 14 commit fca0a6c394990b86304a8f9a64bf4c7ec58abbd6 (HEAD -> master, upstream/master, upstream/HEAD) Author: Kevin Yu <qyu@us.ibm.com> Date: Thu Nov 14 14:58:32 2019 -0600 build using: $ dev/make-distribution.sh --tgz -Phadoop-2.7 -Dhadoop.version=2.7.4 -Pyarn deployed on AWS EMR 5.28 with 10 m5.xlarge slaves in spark-env.sh: HADOOP_CONF_DIR=/etc/hadoop/conf in spark-defaults.conf: spark.master yarn spark.submit.deployMode client spark.serializer org.apache.spark.serializer.KryoSerializer spark.hadoop.yarn.timeline-service.enabled false spark.driver.extraClassPath /usr/lib/hadoop-lzo/lib/hadoop-lzo.jar spark.driver.extraLibraryPath /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native spark.executor.extraClassPath /usr/lib/hadoop-lzo/lib/hadoop-lzo.jar spark.executor.extraLibraryPath /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native
Description
we observed an issue where spark seems to confuse a data line (not the first line of the csv file) for the csv header when it creates the schema.
$ wget http://download.cms.gov/openpayments/PGYR13_P062819.ZIP $ unzip PGYR13_P062819.ZIP $ hadoop fs -put OP_DTL_GNRL_PGYR2013_P06282019.csv $ spark-3.0.0-SNAPSHOT-bin-2.7.4/bin/spark-shell --conf spark.sql.adaptive.enabled=true --num-executors 10 Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 19/11/15 00:26:47 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME. Spark context Web UI available at http://ip-xx-xxx-x-xxx.ec2.internal:4040 Spark context available as 'sc' (master = yarn, app id = application_1573772077642_0006). Spark session available as 'spark'. Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 3.0.0-SNAPSHOT /_/ Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM, Java 1.8.0_222) Type in expressions to have them evaluated. Type :help for more information. scala> spark.read.format("csv").option("header", true).option("enforceSchema", false).load("OP_DTL_GNRL_PGYR2013_P06282019.csv").show(1) 19/11/15 00:27:10 WARN util.package: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.sql.debug.maxToStringFields'. [Stage 2:> (0 + 10) / 17]19/11/15 00:27:11 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 2.0 (TID 35, ip-xx-xxx-x-xxx.ec2.internal, executor 1): java.lang.IllegalArgumentException: CSV header does not conform to the schema. Header: Change_Type, Covered_Recipient_Type, Teaching_Hospital_CCN, Teaching_Hospital_ID, Teaching_Hospital_Name, Physician_Profile_ID, Physician_First_Name, Physician_Middle_Name, Physician_Last_Name, Physician_Name_Suffix, Recipient_Primary_Business_Street_Address_Line1, Recipient_Primary_Business_Street_Address_Line2, Recipient_City, Recipient_State, Recipient_Zip_Code, Recipient_Country, Recipient_Province, Recipient_Postal_Code, Physician_Primary_Type, Physician_Specialty, Physician_License_State_code1, Physician_License_State_code2, Physician_License_State_code3, Physician_License_State_code4, Physician_License_State_code5, Submitting_Applicable_Manufacturer_or_Applicable_GPO_Name, Applicable_Manufacturer_or_Applicable_GPO_Making_Payment_ID, Applicable_Manufacturer_or_Applicable_GPO_Making_Payment_Name, Applicable_Manufacturer_or_Applicable_GPO_Making_Payment_State, Applicable_Manufacturer_or_Applicable_GPO_Making_Payment_Country, Total_Amount_of_Payment_USDollars, Date_of_Payment, Number_of_Payments_Included_in_Total_Amount, Form_of_Payment_or_Transfer_of_Value, Nature_of_Payment_or_Transfer_of_Value, City_of_Travel, State_of_Travel, Country_of_Travel, Physician_Ownership_Indicator, Third_Party_Payment_Recipient_Indicator, Name_of_Third_Party_Entity_Receiving_Payment_or_Transfer_of_Value, Charity_Indicator, Third_Party_Equals_Covered_Recipient_Indicator, Contextual_Information, Delay_in_Publication_Indicator, Record_ID, Dispute_Status_for_Publication, Product_Indicator, Name_of_Associated_Covered_Drug_or_Biological1, Name_of_Associated_Covered_Drug_or_Biological2, Name_of_Associated_Covered_Drug_or_Biological3, Name_of_Associated_Covered_Drug_or_Biological4, Name_of_Associated_Covered_Drug_or_Biological5, NDC_of_Associated_Covered_Drug_or_Biological1, NDC_of_Associated_Covered_Drug_or_Biological2, NDC_of_Associated_Covered_Drug_or_Biological3, NDC_of_Associated_Covered_Drug_or_Biological4, NDC_of_Associated_Covered_Drug_or_Biological5, Name_of_Associated_Covered_Device_or_Medical_Supply1, Name_of_Associated_Covered_Device_or_Medical_Supply2, Name_of_Associated_Covered_Device_or_Medical_Supply3, Name_of_Associated_Covered_Device_or_Medical_Supply4, Name_of_Associated_Covered_Device_or_Medical_Supply5, Program_Year, Payment_Publication_Date Schema: UNCHANGED, Covered Recipient Physician, _c2, _c3, _c4, 278352, JOHN, M, RAY, JR, 3625 CAPE CENTER DR, _c11, FAYETTEVILLE, NC13, 28304-4457, United States15, _c16, _c17, Medical Doctor, Allopathic & Osteopathic Physicians|Family Medicine, NC20, _c21, _c22, _c23, _c24, Par Pharmaceutical, Inc.25, 100000010989, Par Pharmaceutical, Inc.27, NY, United States29, 17.29, 10/23/2013, 1, In-kind items and services, Food and Beverage, _c35, _c36, _c37, No38, No Third Party Payment, _c40, _c41, _c42, _c43, No44, 104522962, No46, Covered, MEGACE ES MEGESTROL ACETATE, _c49, _c50, _c51, _c52, 4988409496, _c54, _c55, _c56, _c57, _c58, _c59, _c60, _c61, _c62, 2013, 06/28/2019 Expected: UNCHANGED but found: Change_Type CSV file: hdfs://ip-xx-xxx-x-xxx.ec2.internal:8020/user/hadoop/OP_DTL_GNRL_PGYR2013_P06282019.csv at org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.$anonfun$checkHeaderColumnNames$2(CSVHeaderChecker.scala:95) at org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.$anonfun$checkHeaderColumnNames$2$adapted(CSVHeaderChecker.scala:91) at scala.Option.foreach(Option.scala:407) at org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.checkHeaderColumnNames(CSVHeaderChecker.scala:91) at org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.$anonfun$checkHeaderColumnNames$6(CSVHeaderChecker.scala:127) at org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.$anonfun$checkHeaderColumnNames$6$adapted(CSVHeaderChecker.scala:126) at scala.Option.foreach(Option.scala:407) at org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.checkHeaderColumnNames(CSVHeaderChecker.scala:126) at org.apache.spark.sql.catalyst.csv.UnivocityParser$.parseIterator(UnivocityParser.scala:340) at org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.readFile(CSVDataSource.scala:106) at org.apache.spark.sql.execution.datasources.v2.csv.CSVPartitionReaderFactory.buildReader(CSVPartitionReaderFactory.scala:68) at org.apache.spark.sql.execution.datasources.v2.FilePartitionReaderFactory.$anonfun$createReader$1(FilePartitionReaderFactory.scala:29) at scala.collection.Iterator$$anon$10.next(Iterator.scala:459) at org.apache.spark.sql.execution.datasources.v2.FilePartitionReader.getNextReader(FilePartitionReader.scala:109) at org.apache.spark.sql.execution.datasources.v2.FilePartitionReader.next(FilePartitionReader.scala:42) at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:62) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:726) at scala.collection.Iterator$SliceIterator.hasNext(Iterator.scala:266) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:132) at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52) at org.apache.spark.scheduler.Task.run(Task.scala:127) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:425) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:428) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
if i instead run:
spark-3.0.0-SNAPSHOT-bin-2.7.4/bin/spark-shell --conf spark.sql.adaptive.enabled=false --num-executors 10
everything runs fine.
note that we first observed the issue on our inhouse cluster, not on EMR, and it wasn't with a simple .show command, but with job that was doing distributed reading and writing.
Attachments
Issue Links
- relates to
-
SPARK-23128 The basic framework for the new Adaptive Query Execution
- Resolved
- links to