Description
Before iteration, LoR/AFT/LiR/SVC use MultivariateOnlineSummarizer to summarize the input dataset, however, MultivariateOnlineSummarizer compute much more than needed.
example:
bin/spark-shell --driver-memory=4G
import org.apache.spark.ml.feature._ import org.apache.spark.ml.regression._ import org.apache.spark.ml.classification._ scala> val df = spark.read.format("libsvm").load("/data1/Datasets/kdda/kdda.t") 19/11/05 13:47:02 WARN LibSVMFileFormat: 'numFeatures' option not specified, determining the number of features by going though the input. If you know the number in advance, please specify it via 'numFeatures' option to avoid the extra scan. df: org.apache.spark.sql.DataFrame = [label: double, features: vector] scala> df.persist() res0: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label: double, features: vector] scala> df.count res1: Long = 510302 scala> df.show(3) +-----+--------------------+ |label| features| +-----+--------------------+ | 1.0|(2014669,[0,1,2,3...| | 1.0|(2014669,[1,2,3,4...| | 0.0|(2014669,[1,2,3,4...| +-----+--------------------+ val lr = new LogisticRegression().setMaxIter(1) val tic = System.currentTimeMillis; val model = lr.fit(df); val toc = System.currentTimeMillis; toc - tic
The input dataset is here (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2010%20(algebra))
#instance=510302, #features=2014669
Above example will fail because of OOM:
Caused by: java.lang.OutOfMemoryError: Java heap space at java.lang.Object.clone(Native Method) at org.apache.spark.mllib.stat.MultivariateOnlineSummarizer.merge(MultivariateOnlineSummarizer.scala:174) at org.apache.spark.ml.classification.LogisticRegression.$anonfun$train$3(LogisticRegression.scala:511) at org.apache.spark.ml.classification.LogisticRegression$$Lambda$4111/1818679131.apply(Unknown Source) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$foldByKey$3(PairRDDFunctions.scala:218) at org.apache.spark.rdd.PairRDDFunctions$$Lambda$4139/1537760275.apply(Unknown Source) at org.apache.spark.util.collection.ExternalSorter.$anonfun$insertAll$1(ExternalSorter.scala:190) at org.apache.spark.util.collection.ExternalSorter.$anonfun$insertAll$1$adapted(ExternalSorter.scala:189) at org.apache.spark.util.collection.ExternalSorter$$Lambda$4180/1672153085.apply(Unknown Source) at org.apache.spark.util.collection.AppendOnlyMap.changeValue(AppendOnlyMap.scala:144) at org.apache.spark.util.collection.SizeTrackingAppendOnlyMap.changeValue(SizeTrackingAppendOnlyMap.scala:32) at org.apache.spark.util.collection.ExternalSorter.insertAll(ExternalSorter.scala:195) at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:62) at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52) at org.apache.spark.scheduler.Task.run(Task.scala:127) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:462) at org.apache.spark.executor.Executor$TaskRunner$$Lambda$2799/542333665.apply(Unknown Source) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:465) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
Here, if we use ml.Summarizer instead, only 3G memory is enough to fit this LR model.
Attachments
Issue Links
- links to