Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-28927

Improve error for ArrayIndexOutOfBoundsException and Not-stable AUC metrics in ALS for datasets with 12 billion instances

    XMLWordPrintableJSON

Details

    • Improvement
    • Status: Resolved
    • Minor
    • Resolution: Fixed
    • 2.2.1
    • 3.0.0
    • ML
    • None

    Description

      The stack trace is below:

      19/08/28 07:00:40 WARN Executor task launch worker for task 325074 BlockManager: Block rdd_10916_493 could not be removed as it was not found on disk or in memory 19/08/28 07:00:41 ERROR Executor task launch worker for task 325074 Executor: Exception in task 3.0 in stage 347.1 (TID 325074) java.lang.ArrayIndexOutOfBoundsException: 6741 at org.apache.spark.dpshade.recommendation.ALS$$anonfun$org$apache$spark$ml$recommendation$ALS$$computeFactors$1.apply(ALS.scala:1460) at org.apache.spark.dpshade.recommendation.ALS$$anonfun$org$apache$spark$ml$recommendation$ALS$$computeFactors$1.apply(ALS.scala:1440) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$mapValues$1$$anonfun$apply$40$$anonfun$apply$41.apply(PairRDDFunctions.scala:760) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$mapValues$1$$anonfun$apply$40$$anonfun$apply$41.apply(PairRDDFunctions.scala:760) at scala.collection.Iterator$$anon$11.next(Iterator.scala:409) at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:216) at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1041) at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1032) at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:972) at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1032) at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:763) at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334) at org.apache.spark.rdd.RDD.iterator(RDD.scala:285) at org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$2.apply(CoGroupedRDD.scala:141) at org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$2.apply(CoGroupedRDD.scala:137) at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732) at org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:137) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:358) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745)

      This exception happened sometimes.  And we also found that the AUC metric was not stable when evaluating the inner product of the user factors and the item factors with the same dataset and configuration. AUC varied from 0.60 to 0.67 which was not stable for production environment. 

      Dataset capacity: ~12 billion ratings
      Here is the our code:

      val hivedata = sc.sql(sqltext).select("id", "dpid", "score", "tag")
                  .repartition(6000).persist(StorageLevel.MEMORY_AND_DISK_SER)
      val zeroValueArrItem = ArrayBuffer[(String, Int)]()
      val predataItem = hivedata.
        map(r => (r.getString(0), (r.getString(1), r.getInt(2)))).rdd.
        aggregateByKey(zeroValueArrItem, 6000)((a, b) => a += b, (a, b) => a ++ b).
        zipWithIndex().
        setName(predataItemName).
        persist(StorageLevel.MEMORY_AND_DISK_SER)
      val zeroValueArr = ArrayBuffer[(Int, Int)]()
      val predataUser = predataItem.
        flatMap(r => r._1._2.map(y => (y._1, (r._2.toInt, y._2)))).
        aggregateByKey(zeroValueArr, 6000)((a, b) => a += b, (a, b) => a ++ b).
        zipWithIndex().setName(predataUserName).persist(StorageLevel.MEMORY_AND_DISK_SER)
      val trainData = predataUser.flatMap(x => x._1._2.map(y => (x._2.toInt, y._1, y._2.toFloat)))
       .setName(trainDataName).persist(StorageLevel.MEMORY_AND_DISK_SER)case class ALSData(user:Int, item:Int, rating:Float) extends Serializable
       val ratingData = trainData.map(x => ALSData(x._1, x._2, x._3)).toDF()
       val als = new ALS
       val paramMap = ParamMap(als.alpha -> 25000).
       put(als.checkpointInterval, 5).
       put(als.implicitPrefs, true).
       put(als.itemCol, "item").
       put(als.maxIter, 60).
       put(als.nonnegative, false).
       put(als.numItemBlocks, 600).
       put(als.numUserBlocks, 600).
       put(als.regParam, 4.5).
       put(als.rank, 25).
       put(als.userCol, "user")
       als.fit(ratingData, paramMap)

      Attachments

        Issue Links

          Activity

            People

              viirya L. C. Hsieh
              JerryHouse Qiang Wang
              Votes:
              0 Vote for this issue
              Watchers:
              4 Start watching this issue

              Dates

                Created:
                Updated:
                Resolved: