Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Incomplete
-
2.3.0
-
None
Description
We seem to have found an issue with PySpark UDFs interacting with withColumn when the UDF depends on the column added in withColumn, but only if withColumn is performed after a distinct().
Simplest repro in a local PySpark shell:
import pyspark.sql.functions as F @F.udf def ident(x): return x spark.createDataFrame([{'a': '1'}]) \ .distinct() \ .withColumn('b', F.lit('qq')) \ .withColumn('fails_here', ident('b')) \ .collect()
This fails with the following exception:
: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: pythonUDF0#13 at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:91) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:90) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:90) at org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$38.apply(HashAggregateExec.scala:514) at org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$38.apply(HashAggregateExec.scala:513) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.immutable.List.map(List.scala:285) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.generateResultFunction(HashAggregateExec.scala:513) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduceWithKeys(HashAggregateExec.scala:659) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduce(HashAggregateExec.scala:164) at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:85) at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:80) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:141) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:138) at org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:80) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.produce(HashAggregateExec.scala:38) at org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:374) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:422) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:113) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:141) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:138) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113) at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:233) at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:280) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:3088) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3085) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3085) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:3118) at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:3085) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:748) Caused by: java.lang.RuntimeException: Couldn't find pythonUDF0#13 in [a#0] at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:97) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:91) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) ... 58 more
The odd part is that if you run the code, but remove the .distinct(), or place it after either of the .withColumn lines, we don't get the error.
Attachments
Issue Links
- is related to
-
SPARK-26041 catalyst cuts out some columns from dataframes: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute
- Resolved
- links to