Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Fixed
-
2.3.0
-
None
Description
With today's master...
The following streaming query with watermark and dropDuplicates yields RuntimeException due to failure in binding.
val topic1 = spark. readStream. format("kafka"). option("subscribe", "topic1"). option("kafka.bootstrap.servers", "localhost:9092"). option("startingoffsets", "earliest"). load val records = topic1. withColumn("eventtime", 'timestamp). // <-- just to put the right name given the purpose withWatermark(eventTime = "eventtime", delayThreshold = "30 seconds"). // <-- use the renamed eventtime column dropDuplicates("value"). // dropDuplicates will use watermark // only when eventTime column exists // include the watermark column => internal design leak? select('key cast "string", 'value cast "string", 'eventtime). as[(String, String, java.sql.Timestamp)] scala> records.explain == Physical Plan == *Project [cast(key#0 as string) AS key#169, cast(value#1 as string) AS value#170, eventtime#157-T30000ms] +- StreamingDeduplicate [value#1], StatefulOperatorStateInfo(<unknown>,93c3de98-3f85-41a4-8aef-d09caf8ea693,0,0), 0 +- Exchange hashpartitioning(value#1, 200) +- EventTimeWatermark eventtime#157: timestamp, interval 30 seconds +- *Project [key#0, value#1, timestamp#5 AS eventtime#157] +- StreamingRelation kafka, [key#0, value#1, topic#2, partition#3, offset#4L, timestamp#5, timestampType#6] import org.apache.spark.sql.streaming.{OutputMode, Trigger} val sq = records. writeStream. format("console"). option("truncate", false). trigger(Trigger.ProcessingTime("10 seconds")). queryName("from-kafka-topic1-to-console"). outputMode(OutputMode.Update). start
------------------------------------------- Batch: 0 ------------------------------------------- 17/07/27 10:28:58 ERROR Executor: Exception in task 3.0 in stage 13.0 (TID 438) org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: eventtime#157-T30000ms at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87) at org.apache.spark.sql.catalyst.expressions.codegen.GeneratePredicate$.bind(GeneratePredicate.scala:45) at org.apache.spark.sql.catalyst.expressions.codegen.GeneratePredicate$.bind(GeneratePredicate.scala:40) at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator.generate(CodeGenerator.scala:977) at org.apache.spark.sql.execution.SparkPlan.newPredicate(SparkPlan.scala:370) at org.apache.spark.sql.execution.streaming.StreamingDeduplicateExec.org$apache$spark$sql$execution$streaming$WatermarkSupport$$super$newPredicate(statefulOperators.scala:350) at org.apache.spark.sql.execution.streaming.WatermarkSupport$$anonfun$watermarkPredicateForKeys$1.apply(statefulOperators.scala:160) at org.apache.spark.sql.execution.streaming.WatermarkSupport$$anonfun$watermarkPredicateForKeys$1.apply(statefulOperators.scala:160) at scala.Option.map(Option.scala:146) at org.apache.spark.sql.execution.streaming.WatermarkSupport$class.watermarkPredicateForKeys(statefulOperators.scala:160) at org.apache.spark.sql.execution.streaming.StreamingDeduplicateExec.watermarkPredicateForKeys$lzycompute(statefulOperators.scala:350) at org.apache.spark.sql.execution.streaming.StreamingDeduplicateExec.watermarkPredicateForKeys(statefulOperators.scala:350) at org.apache.spark.sql.execution.streaming.WatermarkSupport$class.removeKeysOlderThanWatermark(statefulOperators.scala:167) at org.apache.spark.sql.execution.streaming.StreamingDeduplicateExec.removeKeysOlderThanWatermark(statefulOperators.scala:350) at org.apache.spark.sql.execution.streaming.StreamingDeduplicateExec$$anonfun$doExecute$4$$anonfun$apply$4$$anonfun$apply$mcV$sp$1.apply$mcV$sp(statefulOperators.scala:403) at org.apache.spark.sql.execution.streaming.StateStoreWriter$class.timeTakenMs(statefulOperators.scala:96) at org.apache.spark.sql.execution.streaming.StreamingDeduplicateExec.timeTakenMs(statefulOperators.scala:350) at org.apache.spark.sql.execution.streaming.StreamingDeduplicateExec$$anonfun$doExecute$4$$anonfun$apply$4.apply$mcV$sp(statefulOperators.scala:403) at org.apache.spark.util.CompletionIterator$$anon$1.completion(CompletionIterator.scala:46) at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:35) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:344) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: java.lang.RuntimeException: Couldn't find eventtime#157-T30000ms in [value#185] at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) ... 49 more
I'm somehow convinced that watermark support leaks from StreamingDeduplicate and forces a Spark developer to include extra fields for watermark. I think filter pushdown (for the select) should not be executed for this case or should include the extra eventTime column (regardless of whether a developer uses it or not).