Description
original post at
stackoverflow
I get error when working with pyspark window function. here is some example code:
import pyspark import pyspark.sql.functions as sf import pyspark.sql.types as sparktypes from pyspark.sql import window sc = pyspark.SparkContext() sqlc = pyspark.SQLContext(sc) rdd = sc.parallelize([(1, 2.0), (1, 3.0), (1, 1.), (1, -2.), (1, -1.)]) df = sqlc.createDataFrame(rdd, ["x", "AmtPaid"]) df.show()
gives:
x | AmtPaid |
1 | 2.0 |
1 | 3.0 |
1 | 1.0 |
1 | -2.0 |
1 | -1.0 |
next, compute cumulative sum
win_spec_max = (window.Window .partitionBy(['x']) .rowsBetween(window.Window.unboundedPreceding, 0))) df = df.withColumn('AmtPaidCumSum', sf.sum(sf.col('AmtPaid')).over(win_spec_max)) df.show()
gives,
x | AmtPaid | AmtPaidCumSum |
1 | 2.0 | 2.0 |
1 | 3.0 | 5.0 |
1 | 1.0 | 6.0 |
1 | -2.0 | 4.0 |
1 | -1.0 | 3.0 |
next, compute cumulative max,
df = df.withColumn('AmtPaidCumSumMax', sf.max(sf.col('AmtPaidCumSum')).over(win_spec_max)) df.show()
gives error log
Py4JJavaError: An error occurred while calling o2609.showString. with traceback: Py4JJavaErrorTraceback (most recent call last) <ipython-input-215-3106d06b6e49> in <module>() ----> 1 df.show() /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in show(self, n, truncate) 316 """ 317 if isinstance(truncate, bool) and truncate: --> 318 print(self._jdf.showString(n, 20)) 319 else: 320 print(self._jdf.showString(n, int(truncate))) /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc in __call__(self, *args) 1131 answer = self.gateway_client.send_command(command) 1132 return_value = get_return_value( -> 1133 answer, self.gateway_client, self.target_id, self.name) 1134 1135 for temp_arg in temp_args: /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in deco(*a, **kw) 61 def deco(*a, **kw): 62 try: ---> 63 return f(*a, **kw) 64 except py4j.protocol.Py4JJavaError as e: 65 s = e.java_exception.toString() /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc in get_return_value(answer, gateway_client, target_id, name) 317 raise Py4JJavaError( 318 "An error occurred while calling {0}{1}{2}.\n". --> 319 format(target_id, ".", name), value) 320 else: 321 raise Py4JError(
but interestingly enough, if i introduce another change before sencond window operation, say inserting a column then it does not give that error:
df = df.withColumn('MaxBound', sf.lit(6.))
df.show()
x | AmtPaid | AmtPaidCumSum | MaxBound |
1 | 2.0 | 2.0 | 6.0 |
1 | 3.0 | 5.0 | 6.0 |
1 | 1.0 | 6.0 | 6.0 |
1 | -2.0 | 4.0 | 6.0 |
1 | -1.0 | 3.0 | 6.0 |
#then apply the second window operations df = df.withColumn('AmtPaidCumSumMax', sf.max(sf.col('AmtPaidCumSum')).over(win_spec_max)) df.show()
x | AmtPaid | AmtPaidCumSum | MaxBound | AmtPaidCumSumMax |
1 | 2.0 | 2.0 | 6.0 | 2.0 |
1 | 3.0 | 5.0 | 6.0 | 5.0 |
1 | 1.0 | 6.0 | 6.0 | 6.0 |
1 | -2.0 | 4.0 | 6.0 | 6.0 |
1 | -1.0 | 3.0 | 6.0 | 6.0 |
I do not understand this behaviour
well, so far so good, but then I try another operation then again get similar error:
def _udf_compare_cumsum_sll(x): if x['AmtPaidCumSumMax'] >= x['MaxBound']: output = 0 else: output = x['AmtPaid'] return output udf_compare_cumsum_sll = sf.udf(_udf_compare_cumsum_sll, sparktypes.FloatType()) df = df.withColumn('AmtPaidAdjusted', udf_compare_cumsum_sll(sf.struct([df[x] for x in df.columns]))) df.show()
gives,
Py4JJavaErrorTraceback (most recent call last) <ipython-input-18-3106d06b6e49> in <module>() ----> 1 df.show() /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in show(self, n, truncate) 316 """ 317 if isinstance(truncate, bool) and truncate: --> 318 print(self._jdf.showString(n, 20)) 319 else: 320 print(self._jdf.showString(n, int(truncate))) /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc in __call__(self, *args) 1131 answer = self.gateway_client.send_command(command) 1132 return_value = get_return_value( -> 1133 answer, self.gateway_client, self.target_id, self.name) 1134 1135 for temp_arg in temp_args: /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in deco(*a, **kw) 61 def deco(*a, **kw): 62 try: ---> 63 return f(*a, **kw) 64 except py4j.protocol.Py4JJavaError as e: 65 s = e.java_exception.toString() /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc in get_return_value(answer, gateway_client, target_id, name) 317 raise Py4JJavaError( 318 "An error occurred while calling {0}{1}{2}.\n". --> 319 format(target_id, ".", name), value) 320 else: 321 raise Py4JError( Py4JJavaError: An error occurred while calling o91.showString. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 36.0 failed 1 times, most recent failure: Lost task 0.0 in stage 36.0 (TID 645, localhost, executor driver): org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: AmtPaidCumSum#10
I wonder if someone could reproduce this behaviour ...
here is complete log ..
Py4JJavaErrorTraceback (most recent call last) <ipython-input-69-3106d06b6e49> in <module>() ----> 1 df.show() /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in show(self, n, truncate) 316 """ 317 if isinstance(truncate, bool) and truncate: --> 318 print(self._jdf.showString(n, 20)) 319 else: 320 print(self._jdf.showString(n, int(truncate))) /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc in __call__(self, *args) 1131 answer = self.gateway_client.send_command(command) 1132 return_value = get_return_value( -> 1133 answer, self.gateway_client, self.target_id, self.name) 1134 1135 for temp_arg in temp_args: /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in deco(*a, **kw) 61 def deco(*a, **kw): 62 try: ---> 63 return f(*a, **kw) 64 except py4j.protocol.Py4JJavaError as e: 65 s = e.java_exception.toString() /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc in get_return_value(answer, gateway_client, target_id, name) 317 raise Py4JJavaError( 318 "An error occurred while calling {0}{1}{2}.\n". --> 319 format(target_id, ".", name), value) 320 else: 321 raise Py4JError( Py4JJavaError: An error occurred while calling o703.showString. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 119.0 failed 1 times, most recent failure: Lost task 0.0 in stage 119.0 (TID 1817, localhost, executor driver): org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: AmtPaidCumSum#2076 at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:287) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$11.apply(TreeNode.scala:360) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.immutable.List.map(List.scala:285) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:358) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:329) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:293) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:277) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87) at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38) at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.AbstractTraversable.map(Traversable.scala:104) at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.bind(GenerateMutableProjection.scala:38) at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.generate(GenerateMutableProjection.scala:44) at org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:353) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:203) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:202) at org.apache.spark.sql.execution.window.AggregateProcessor$.apply(AggregateProcessor.scala:98) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2.org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1(WindowExec.scala:198) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:225) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:222) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.<init>(WindowExec.scala:318) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:290) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:289) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.RuntimeException: Couldn't find AmtPaidCumSum#2076 in [sum#2299,max#2300,x#2066L,AmtPaid#2067] at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) ... 62 more Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112) at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795) at org.apache.spark.sql.Dataset.head(Dataset.scala:2112) at org.apache.spark.sql.Dataset.take(Dataset.scala:2327) at org.apache.spark.sql.Dataset.showString(Dataset.scala:248) at sun.reflect.GeneratedMethodAccessor83.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:280) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:745) Caused by: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: null at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:287) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$11.apply(TreeNode.scala:360) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.immutable.List.map(List.scala:285) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:358) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:329) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:293) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:277) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87) at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38) at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.AbstractTraversable.map(Traversable.scala:104) at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.bind(GenerateMutableProjection.scala:38) at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.generate(GenerateMutableProjection.scala:44) at org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:353) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:203) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:202) at org.apache.spark.sql.execution.window.AggregateProcessor$.apply(AggregateProcessor.scala:98) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2.org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1(WindowExec.scala:198) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:225) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:222) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.<init>(WindowExec.scala:318) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:290) at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:289) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) ... 1 more Caused by: java.lang.RuntimeException: Couldn't find AmtPaidCumSum#2076 in [sum#2299,max#2300,x#2066L,AmtPaid#2067] at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) ... 62 more
Attachments
Issue Links
- is related to
-
SPARK-26041 catalyst cuts out some columns from dataframes: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute
- Resolved
- links to