Details
-
Improvement
-
Status: Resolved
-
Minor
-
Resolution: Incomplete
-
2.1.0
-
None
-
Patch
Description
Bucketizer can put NaN values into a special bucket when handleInvalid is on. but leave null values untouched.
import org.apache.spark.ml.feature.Bucketizer val data = sc.parallelize(Seq(("crackcell", null.asInstanceOf[java.lang.Double]))).toDF("name", "number") val bucketizer = new Bucketizer().setInputCol("number").setOutputCol("number_output").setSplits(Array(Double.NegativeInfinity, 0, 10, Double.PositiveInfinity)).setHandleInvalid("keep") val res = bucketizer.transform(data) res.show(1)
will output:
--------
----------------
name number number_output --------
----------------
crackcell null null --------
----------------
If we change null to NaN:
val data2 = sc.parallelize(Seq(("crackcell", Double.NaN))).toDF("name", "number") data2: org.apache.spark.sql.DataFrame = [name: string, number: double] bucketizer.transform(data2).show(1)
will output:
--------
----------------
name number number_output --------
----------------
crackcell NaN 3.0 --------
----------------
Maybe we should unify the behaviours? Is it resonable to process nulls as well? If so, maybe my code can help.