Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-18699

Spark CSV parsing types other than String throws exception when malformed

    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Major
    • Resolution: Fixed
    • 2.0.2
    • 2.2.0
    • SQL
    • None

    Description

      If CSV is read and the schema contains any other type than String, exception is thrown when the string value in CSV is malformed; e.g. if the timestamp does not match the defined one, an exception is thrown:

      Caused by: java.lang.IllegalArgumentException
      	at java.sql.Date.valueOf(Date.java:143)
      	at org.apache.spark.sql.catalyst.util.DateTimeUtils$.stringToTime(DateTimeUtils.scala:137)
      	at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply$mcJ$sp(CSVInferSchema.scala:272)
      	at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply(CSVInferSchema.scala:272)
      	at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply(CSVInferSchema.scala:272)
      	at scala.util.Try.getOrElse(Try.scala:79)
      	at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$.castTo(CSVInferSchema.scala:269)
      	at org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:116)
      	at org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:85)
      	at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$2.apply(CSVFileFormat.scala:128)
      	at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$2.apply(CSVFileFormat.scala:127)
      	at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
      	at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
      	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
      	at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:91)
      	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
      	at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
      	at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
      	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply$mcV$sp(WriterContainer.scala:253)
      	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply(WriterContainer.scala:252)
      	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply(WriterContainer.scala:252)
      	at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1348)
      	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:258)
      	... 8 more
      

      It behaves similarly with Integer and Long types, from what I've seen.

      To my understanding modes PERMISSIVE and DROPMALFORMED should just null the value or drop the line, but instead they kill the job.

      Attachments

        Issue Links

          Activity

            People

              maropu Takeshi Yamamuro
              jsnowacki Jakub Nowacki
              Votes:
              1 Vote for this issue
              Watchers:
              7 Start watching this issue

              Dates

                Created:
                Updated:
                Resolved: