Details
-
Bug
-
Status: Closed
-
Major
-
Resolution: Duplicate
-
2.0.0
-
None
-
None
Description
I have some complex (10-table joins) SQL queries that utilize outer joins that work fine in Spark 1.6.2, but fail under Spark 2.0. I was able to duplicate the problem using a simple test case.
Here's the code for Spark 2.0 that doesn't run (this runs fine in Spark 1.6.2):
case class C1(f1: String, f2: String, f3: String, f4: String) case class C2(g1: String, g2: String, g3: String, g4: String) case class C3(h1: String, h2: String, h3: String, h4: String) val sqlContext = spark.sqlContext val c1 = sc.parallelize(Seq( C1("h1", "c1a1", "c1b1", "c1c1"), C1("h2", "c1a2", "c1b2", "c1c2"), C1(null, "c1a3", "c1b3", "c1c3") )).toDF c1.createOrReplaceTempView("c1") val c2 = sc.parallelize(Seq( C2("h1", "c2a1", "c2b1", "c2c1"), C2("h2", "c2a2", "c2b2", "c2c2"), C2(null, "c2a3", "c2b3", "c2c3"), C2(null, "c2a4", "c2b4", "c2c4"), C2("h333", "c2a333", "c2b333", "c2c333") )).toDF c2.createOrReplaceTempView("c2") val c3 = sc.parallelize(Seq( C3("h1", "c3a1", "c3b1", "c3c1"), C3("h2", "c3a2", "c3b2", "c3c2"), C3(null, "c3a3", "c3b3", "c3c3") )).toDF c3.createOrReplaceTempView("c3") // doesn't work in Spark 2.0, works in Spark 1.6 val bad_df = sqlContext.sql(""" select * from c1, c3 left outer join c2 on (c1.f1 = c2.g1) where c1.f1 = c3.h1 """).show() // works in both val works_df = sqlContext.sql(""" select * from c1 left outer join c2 on (c1.f1 = c2.g1), c3 where c1.f1 = c3.h1 """).show()
Here's the output after running bad_df in Spark 2.0:
scala> val bad_df = sqlContext.sql(""" | select * | from c1, c3 | left outer join c2 on (c1.f1 = c2.g1) | where c1.f1 = c3.h1 | """).show() org.apache.spark.sql.AnalysisException: cannot resolve '`c1.f1`' given input columns: [h3, g3, h4, g2, g4, h2, h1, g1]; line 4 pos 25 at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:77) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:301) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:301) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:300) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:321) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:179) at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:319) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:298) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:190) at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:201) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$5.apply(QueryPlan.scala:209) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:179) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:209) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:74) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:125) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:125) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:125) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:58) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:582) at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:682) ... 53 elided scala>
I confirmed this fails on the Spark 2.0 nightly build as well. This runs just fine in Spark 1.6.2.
Attachments
Issue Links
- duplicates
-
SPARK-17296 Spark SQL: cross join + two joins = BUG
- Resolved
- is duplicated by
-
SPARK-17296 Spark SQL: cross join + two joins = BUG
- Resolved