Details
-
Improvement
-
Status: Closed
-
Major
-
Resolution: Fixed
-
2.0
-
None
-
None
Description
Hello,
I would like to have a simple methods that gives back all nth roots of a complex number.
Below is the JavaCode for it. I have tested it and it works.
What has to be done is the Exception Handling for NaN and Infinite etc.
You can send me instructions what to do, or you can do it yourself.
I really would like to contribute.
org.apache.commons.math.complex.Complex.java
/** * Compute the angle phi of this complex number. * Where y=imaginary and x=real. * * Here is a short table for it: * <pre> * <code> * +----------+-------------+------------------+------------------+ * | quadrant | I | II, III | IV | * +----------+-------------+------------------+------------------+ * | phi | arctan(y/x) | arctan(y/x)+&pi | arctan(y/x)+2&pi | * +----------+-------------+------------------+------------------+ * </code> * </pre> * * @return the angle phi of this complex number */ public double getPhi() { // the angle phi from arctan(y/x) return Math.atan2(getImaginary(), getReal()); } /** * Compute the n-th root of this complex number. * <p> * For a given n it implements the formula: <pre> * <code> z_k = pow( abs , 1.0/n ) * (cos(phi + k * 2&pi) + i * (sin(phi + k * 2&pi)</code></pre></p> * with <i><code>k=0,1,...,n-1</code></i> and <i><code>pow(abs,1.0/n)</code></i> is the nth root of the absolute-value. * <p> * * @param n degree of root * @return Collection<Complex> all nth roots of this complex number as a Collection * @throws IllegalArgumentException if parameter n is negative! */ public Collection<Complex> nthRoot(int n) throws IllegalArgumentException { if (n <= 0) { throw new IllegalArgumentException("The value for the nth root has to be positive!"); } Collection<Complex> result = new ArrayList<Complex>(); // nth root of abs double nthRootOfAbs = Math.pow( abs() , 1.0/n ); // Compute nth roots of complex number with k=0,1,...n-1 for (int k=0; k<n;k++) { // inner part double innerPart = (getPhi() + k * 2 * Math.PI) / n; double realPart = nthRootOfAbs * Math.cos ( innerPart ); double imaginaryPart = nthRootOfAbs * Math.sin ( innerPart ); result.add(createComplex(realPart, imaginaryPart)); } return result; } /** * To String now returns human readable Form of this complex number * * @return returns a String of the form "real + i * imaginary" */ public String toString() { return getReal() + " + i * " + getImaginary(); }
Unit Test:
org.apache.commons.math.complex.ComplexTest.java
/** * Test: computing <b>third roots</b> of z. * <pre> * <code> * <b>z = -2 + 2 * i</b> * => z_0 = 1 + i * => z_1 = -1.3660 + 0.3660 * i * => z_2 = 0.3660 - 1.3660 * i * </code> * </pre> */ public void testNthRoot_normal_thirdRoot() { // The complex number we want to compute all third-roots for. Complex z = new Complex(-2,2); // The List holding all third roots Complex[] thirdRootsOfZ = z.nthRoot(3).toArray(new Complex[0]); // Returned Collection must not be empty! assertEquals(3, thirdRootsOfZ.length); // test z_0 assertEquals(1.0, thirdRootsOfZ[0].getReal(), 1.0e-5); assertEquals(1.0, thirdRootsOfZ[0].getImaginary(), 1.0e-5); // test z_1 assertEquals(-1.3660254037844386, thirdRootsOfZ[1].getReal(), 1.0e-5); assertEquals(0.36602540378443843, thirdRootsOfZ[1].getImaginary(), 1.0e-5); // test z_2 assertEquals(0.366025403784439, thirdRootsOfZ[2].getReal(), 1.0e-5); assertEquals(-1.3660254037844384, thirdRootsOfZ[2].getImaginary(), 1.0e-5); } /** * Test: computing <b>fourth roots</b> of z. * <pre> * <code> * <b>z = 5 - 2 * i</b> * => z_0 = 1.5164 - 0.1446 * i * => z_1 = 0.1446 + 1.5164 * i * => z_2 = -1.5164 + 0.1446 * i * => z_3 = -1.5164 - 0.1446 * i * </code> * </pre> */ public void testNthRoot_normal_fourthRoot() { // The complex number we want to compute all third-roots for. Complex z = new Complex(5,-2); // The List holding all fourth roots Complex[] fourthRootsOfZ = z.nthRoot(4).toArray(new Complex[0]); // Returned Collection must not be empty! assertEquals(4, fourthRootsOfZ.length); // test z_0 assertEquals(1.5164629308487783, fourthRootsOfZ[0].getReal(), 1.0e-5); assertEquals(-0.14469266210702247, fourthRootsOfZ[0].getImaginary(), 1.0e-5); // test z_1 assertEquals(0.14469266210702256, fourthRootsOfZ[1].getReal(), 1.0e-5); assertEquals(1.5164629308487783, fourthRootsOfZ[1].getImaginary(), 1.0e-5); // test z_2 assertEquals(-1.5164629308487783, fourthRootsOfZ[2].getReal(), 1.0e-5); assertEquals(0.14469266210702267, fourthRootsOfZ[2].getImaginary(), 1.0e-5); // test z_3 assertEquals(-0.14469266210702275, fourthRootsOfZ[3].getReal(), 1.0e-5); assertEquals(-1.5164629308487783, fourthRootsOfZ[3].getImaginary(), 1.0e-5); } /** * Test: computing <b>third roots</b> of z. * <pre> * <code> * <b>z = 8</b> * => z_0 = 2 * => z_1 = -1 + 1.73205 * i * => z_2 = -1 - 1.73205 * i * </code> * </pre> */ public void testNthRoot_cornercase_thirdRoot_imaginaryPartEmpty() { // The number 8 has three third roots. One we all already know is the number 2. // But there are two more complex roots. Complex z = new Complex(8,0); // The List holding all third roots Complex[] thirdRootsOfZ = z.nthRoot(3).toArray(new Complex[0]); // Returned Collection must not be empty! assertEquals(3, thirdRootsOfZ.length); // test z_0 assertEquals(2.0, thirdRootsOfZ[0].getReal(), 1.0e-5); assertEquals(0.0, thirdRootsOfZ[0].getImaginary(), 1.0e-5); // test z_1 assertEquals(-1.0, thirdRootsOfZ[1].getReal(), 1.0e-5); assertEquals(1.7320508075688774, thirdRootsOfZ[1].getImaginary(), 1.0e-5); // test z_2 assertEquals(-1.0, thirdRootsOfZ[2].getReal(), 1.0e-5); assertEquals(-1.732050807568877, thirdRootsOfZ[2].getImaginary(), 1.0e-5); } /** * Test: computing <b>third roots</b> of z with real part 0. * <pre> * <code> * <b>z = 2 * i</b> * => z_0 = 1.0911 + 0.6299 * i * => z_1 = -1.0911 + 0.6299 * i * => z_2 = -2.3144 - 1.2599 * i * </code> * </pre> */ public void testNthRoot_cornercase_thirdRoot_realPartEmpty() { // complex number with only imaginary part Complex z = new Complex(0,2); // The List holding all third roots Complex[] thirdRootsOfZ = z.nthRoot(3).toArray(new Complex[0]); // Returned Collection must not be empty! assertEquals(3, thirdRootsOfZ.length); // test z_0 assertEquals(1.0911236359717216, thirdRootsOfZ[0].getReal(), 1.0e-5); assertEquals(0.6299605249474365, thirdRootsOfZ[0].getImaginary(), 1.0e-5); // test z_1 assertEquals(-1.0911236359717216, thirdRootsOfZ[1].getReal(), 1.0e-5); assertEquals(0.6299605249474365, thirdRootsOfZ[1].getImaginary(), 1.0e-5); // test z_2 assertEquals(-2.3144374213981936E-16, thirdRootsOfZ[2].getReal(), 1.0e-5); assertEquals(-1.2599210498948732, thirdRootsOfZ[2].getImaginary(), 1.0e-5); } /** * Test cornercases with NaN and Infinity. */ public void testNthRoot_cornercase_NAN_Inf() { // third root of z = 1 + NaN * i for (Complex c : oneNaN.nthRoot(3)) { // both parts should be nan assertEquals(nan, c.getReal()); assertEquals(nan, c.getImaginary()); } // third root of z = inf + NaN * i for (Complex c : infNaN.nthRoot(3)) { // both parts should be nan assertEquals(nan, c.getReal()); assertEquals(nan, c.getImaginary()); } // third root of z = neginf + 1 * i Complex[] zInfOne = negInfOne.nthRoot(2).toArray(new Complex[0]); // first root assertEquals(inf, zInfOne[0].getReal()); assertEquals(inf, zInfOne[0].getImaginary()); // second root assertEquals(neginf, zInfOne[1].getReal()); assertEquals(neginf, zInfOne[1].getImaginary()); }