Details
-
Improvement
-
Status: Resolved
-
Minor
-
Resolution: Fixed
-
2.4.0
-
None
-
Darwin WM-CXXXXXX 18.2.0 Darwin Kernel Version 18.2.0: Thu Dec 20 20:46:53 PST 2018; root:xnu-4903.241.1~1/RELEASE_X86_64 x86_64
ProductName: Mac OS X
ProductVersion: 10.14.3
java version "1.8.0_201"
Java(TM) SE Runtime Environment (build 1.8.0_201-b09)
Java HotSpot(TM) 64-Bit Server VM (build 25.201-b09, mixed mode)
Darwin WM-CXXXXXX 18.2.0 Darwin Kernel Version 18.2.0: Thu Dec 20 20:46:53 PST 2018; root:xnu-4903.241.1~1/RELEASE_X86_64 x86_64 ProductName: Mac OS X ProductVersion: 10.14.3 java version "1.8.0_201" Java(TM) SE Runtime Environment (build 1.8.0_201-b09) Java HotSpot(TM) 64-Bit Server VM (build 25.201-b09, mixed mode)
Description
There was a https://github.com/apache/kafka/blob/93bf96589471acadfb90e57ebfecbd91f679f77b/clients/src/main/java/org/apache/kafka/common/network/NetworkSend.java#L30 which can be removed from the network send class.
Initial JMH benchmarks suggest no performance penalty.
Present network send JMH report:
jmh-benchmarks git:(trunk) ✗ ./jmh.sh -f 2 ByteBufferSendBenchmark running gradlew :jmh-benchmarks:clean :jmh-benchmarks:shadowJar in quiet mode ./jmh.sh: line 34: ../gradlew: No such file or directory gradle build done running JMH with args [-f 2 ByteBufferSendBenchmark] # JMH version: 1.21 # VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09 # VM invoker: /Library/Java/JavaVirtualMachines/jdk1.8.0_201.jdk/Contents/Home/jre/bin/java # VM options: <none> # Warmup: 5 iterations, 2000 ms each # Measurement: 5 iterations, 5000 ms each # Timeout: 10 min per iteration # Threads: 1 thread, will synchronize iterations # Benchmark mode: Throughput, ops/time # Benchmark: org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod # Run progress: 0.00% complete, ETA 00:01:10 # Fork: 1 of 2 # Warmup Iteration 1: 35.049 ops/us # Warmup Iteration 2: 60.877 ops/us # Warmup Iteration 3: 59.207 ops/us # Warmup Iteration 4: 59.077 ops/us # Warmup Iteration 5: 59.327 ops/us Iteration 1: 58.516 ops/us Iteration 2: 58.952 ops/us Iteration 3: 58.596 ops/us Iteration 4: 59.126 ops/us Iteration 5: 58.557 ops/us # Run progress: 50.00% complete, ETA 00:00:35 # Fork: 2 of 2 # Warmup Iteration 1: 36.377 ops/us # Warmup Iteration 2: 61.741 ops/us # Warmup Iteration 3: 59.683 ops/us # Warmup Iteration 4: 59.571 ops/us # Warmup Iteration 5: 59.351 ops/us Iteration 1: 59.044 ops/us Iteration 2: 59.107 ops/us Iteration 3: 57.771 ops/us Iteration 4: 59.648 ops/us Iteration 5: 59.408 ops/us Result "org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod": 58.872 ±(99.9%) 0.806 ops/us [Average] (min, avg, max) = (57.771, 58.872, 59.648), stdev = 0.533 CI (99.9%): [58.066, 59.679] (assumes normal distribution) # Run complete. Total time: 00:01:11 REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial experiments, perform baseline and negative tests that provide experimental control, make sure the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts. Do not assume the numbers tell you what you want them to tell. Benchmark Mode Cnt Score Error Units *ByteBufferSendBenchmark.benchmarkMethod thrpt 10 58.872 ± 0.806 ops/us* JMH benchmarks done
and after removing the method call
// code placeholder ./jmh.sh: line 34: ../gradlew: No such file or directory gradle build done running JMH with args [-f 2 ByteBufferSendBenchmark] # JMH version: 1.21 # VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09 # VM invoker: /Library/Java/JavaVirtualMachines/jdk1.8.0_201.jdk/Contents/Home/jre/bin/java # VM options: <none> # Warmup: 5 iterations, 2000 ms each # Measurement: 5 iterations, 5000 ms each # Timeout: 10 min per iteration # Threads: 1 thread, will synchronize iterations # Benchmark mode: Throughput, ops/time # Benchmark: org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod # Run progress: 0.00% complete, ETA 00:01:10 # Fork: 1 of 2 # Warmup Iteration 1: 34.273 ops/us # Warmup Iteration 2: 61.565 ops/us # Warmup Iteration 3: 59.307 ops/us # Warmup Iteration 4: 57.081 ops/us # Warmup Iteration 5: 59.970 ops/us Iteration 1: 59.657 ops/us Iteration 2: 59.607 ops/us Iteration 3: 59.931 ops/us Iteration 4: 59.871 ops/us Iteration 5: 59.504 ops/us # Run progress: 50.00% complete, ETA 00:00:35 # Fork: 2 of 2 # Warmup Iteration 1: 38.849 ops/us # Warmup Iteration 2: 62.525 ops/us # Warmup Iteration 3: 58.492 ops/us # Warmup Iteration 4: 59.954 ops/us # Warmup Iteration 5: 60.017 ops/us Iteration 1: 59.819 ops/us Iteration 2: 60.102 ops/us Iteration 3: 60.195 ops/us Iteration 4: 59.975 ops/us Iteration 5: 60.159 ops/us Result "org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod": 59.882 ±(99.9%) 0.359 ops/us [Average] (min, avg, max) = (59.504, 59.882, 60.195), stdev = 0.237 CI (99.9%): [59.523, 60.241] (assumes normal distribution) # Run complete. Total time: 00:01:11 REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial experiments, perform baseline and negative tests that provide experimental control, make sure the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts. Do not assume the numbers tell you what you want them to tell. Benchmark Mode Cnt Score Error Units *ByteBufferSendBenchmark.benchmarkMethod thrpt 10 59.882 ± 0.359 ops/us* JMH benchmarks done
Attachments
Issue Links
- links to