Details
-
Bug
-
Status: Open
-
Major
-
Resolution: Unresolved
-
None
-
None
-
None
Description
This follows https://issues.apache.org/jira/browse/KAFKA-10413
When runnning the following script, which
1. runs one worker
2. declares two connectors
3. adds two more workers
#!/bin/bash set -xe dkill() { docker stop "$1" || true docker rm -v -f "$1" || true } launch_minio() { # Launch Minio (Fake S3) docker run --network host -d --name minio \ -e MINIO_ROOT_USER=minioadmin \ -e MINIO_ROOT_PASSWORD=minioadmin \ minio/minio server --console-address :9001 /data docker exec -it minio mkdir /data/my-minio-bucket } launch_kafka_connect() { # Start Kafka Connect with S3 Connector docker run --network host -d --name "kafka-connect$1" \ -e AWS_ACCESS_KEY_ID=minioadmin \ -e AWS_SECRET_ACCESS_KEY=minioadmin \ -e CONNECT_REST_ADVERTISED_HOST_NAME="k$1" \ -e CONNECT_LISTENERS="http://localhost:808$1" \ -e CONNECT_BOOTSTRAP_SERVERS=0.0.0.0:9092 \ -e CONNECT_REST_PORT="808$1" \ -e CONNECT_GROUP_ID="connect-cluster" \ -e CONNECT_CONFIG_STORAGE_TOPIC="connect-configs" \ -e CONNECT_OFFSET_STORAGE_TOPIC="connect-offsets" \ -e CONNECT_STATUS_STORAGE_TOPIC="connect-status" \ -e CONNECT_KEY_CONVERTER="org.apache.kafka.connect.json.JsonConverter" \ -e CONNECT_VALUE_CONVERTER="org.apache.kafka.connect.json.JsonConverter" \ -e CONNECT_VALUE_CONVERTER_SCHEMAS_ENABLE=false \ -e CONNECT_INTERNAL_KEY_CONVERTER="org.apache.kafka.connect.json.JsonConverter" \ -e CONNECT_INTERNAL_VALUE_CONVERTER="org.apache.kafka.connect.json.JsonConverter" \ -e CONNECT_INTERNAL_VALUE_CONVERTER_SCHEMAS_ENABLE=false \ -e CONNECT_PLUGIN_PATH="/usr/share/java,/usr/share/confluent-hub-components" \ --entrypoint bash \ confluentinc/cp-kafka-connect:7.6.1 \ -c "confluent-hub install --no-prompt confluentinc/kafka-connect-s3:latest && /etc/confluent/docker/run" } cleanup_docker_env() { docker volume prune -f for container in $(for i in {1..9}; do echo "kafka-connect$i";done) kafka minio do dkill "$container" done } launch_kafka() { docker run --network host --hostname localhost --ulimit nofile=65536:65536 -d --name kafka -p 9092:9092 apache/kafka for i in {1..2} do # Create a Kafka topic docker exec -it kafka /opt/kafka/bin/kafka-topics.sh --create --bootstrap-server 0.0.0.0:9092 --replication-factor 1 --partitions 12 --topic "test_topic$i" done for topic in connect-configs connect-offsets connect-status do # with cleanup.policy=compact, we can't have more than 1 partition docker exec -it kafka /opt/kafka/bin/kafka-topics.sh --create --bootstrap-server 0.0.0.0:9092 --replication-factor 1 --partitions 1 --topic $topic --config cleanup.policy=compact done } cleanup_docker_env launch_kafka launch_minio launch_kafka_connect 1 while true do sleep 5 # Check if Kafka Connect is up curl http://localhost:8081/ || continue break done sleep 10 for i in {1..2} do # Set up a connector curl -X POST -H "Content-Type: application/json" --data '{ "name": "s3-connector'"$i"'", "config": { "connector.class": "io.confluent.connect.s3.S3SinkConnector", "tasks.max": "12", "topics": "test_topic'"$i"'", "s3.region": "us-east-1", "store.url": "http://0.0.0.0:9000", "s3.bucket.name": "my-minio-bucket", "s3.part.size": "5242880", "flush.size": "3", "storage.class": "io.confluent.connect.s3.storage.S3Storage", "format.class": "io.confluent.connect.s3.format.json.JsonFormat", "schema.generator.class": "io.confluent.connect.storage.hive.schema.DefaultSchemaGenerator", "schema.compatibility": "NONE" } }' http://localhost:8081/connectors done launch_kafka_connect 2 launch_kafka_connect 3
When the script ends, I have the first worker taking all the connectors/tasks:
❯ curl -s http://localhost:8081/connectors/s3-connector1/status | jq .tasks |grep worker_id | sort | uniq -c 12 "worker_id": "k1:8081"
❯ curl -s http://localhost:8081/connectors/s3-connector2/status | jq .tasks |grep worker_id | sort | uniq -c 12 "worker_id": "k1:8081"
Then I wait a few minutes,
And I get the final state:
❯ curl -s http://localhost:8081/connectors/s3-connector2/status | jq .tasks |grep worker_id | sort | uniq -c 6 "worker_id": "k2:8082" 6 "worker_id": "k3:8083"
❯ curl -s http://localhost:8081/connectors/s3-connector1/status | jq .tasks |grep worker_id | sort | uniq -c 8 "worker_id": "k1:8081" 2 "worker_id": "k2:8082" 2 "worker_id": "k3:8083"
In the end, we indeed get 8 tasks on each workers, but for distribution reasons , I think it should be (4, 4, 4) for each connector, because all connectors don't do the same amount of work, which will lead to a processing/network imbalance overall.
In my test I always get the same outcome.
This is consistent with what I see in production, which makes autoscaling impossible to use as is.
Attachments
Issue Links
- links to