Uploaded image for project: 'Bahir (Retired)'
  1. Bahir (Retired)
  2. BAHIR-261

Integration of streaming-pubsub in Pyspark

    XMLWordPrintableJSON

Details

    • Bug
    • Status: Open
    • Minor
    • Resolution: Unresolved
    • Spark-2.4.0
    • None
    • MacOS Big Sur 11.2.1

      PySpark cmd (./spark-2.4.7-bin-hadoop2.7/bin/pyspark --packages org.apache.bahir:spark-streaming-pubsub_2.11:2.4.0)

    Description

      Hello folks 👋

       

      I was wondering if there is a possible update that will allow to use pub/sub DStream in PySpark, it does not seems to exist with the current version (2.4.0).

       

      I tried to manually instantiate the pub/sub stream from Pyspark as follow:
       

      import pyspark
      from pyspark.streaming import DStream, StreamingContext
      from pyspark.serializers import UTF8Deserializer
      
      ssc = StreamingContext(sc, 1)
      
      jlevel = ssc._sc._getJavaStorageLevel(pyspark.StorageLevel.MEMORY_AND_DISK_2)
      
      creds = sc._jvm.org.apache.spark.streaming.pubsub.SparkGCPCredentials.Builder().jsonServiceAccount("GDCP_CREDS.json").build()
      
      jstream = sc._jvm.org.apache.spark.streaming.pubsub.PubsubUtils.createStream(ssc._jssc, "PROJECT_NAME", None, "SUB_NAME", creds, jlevel)
      
      dstream = DStream(jstream, ssc, UTF8Deserializer())
      
      ssc.start()ssc.awaitTermination()
      df.writeStream.foreachBatch(batch_processor).start().awaitTermination()

       
       
      But I run into the following issue (org.apache.spark.SparkException: Unexpected element type class org.apache.spark.streaming.pubsub.SparkPubsubMessage)

      21/02/25 10:48:59 ERROR TaskSetManager: Task 0 in stage 2.0 failed 1 times; aborting job
      21/02/25 10:48:59 ERROR JobScheduler: Error running job streaming job 1614246539000 ms.0
      org.apache.spark.SparkException: An exception was raised by Python:
      Traceback (most recent call last):
        File "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/streaming/util.py", line 68, in call
          r = self.func(t, *rdds)
        File "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/streaming/dstream.py", line 173, in takeAndPrint
          taken = rdd.take(num + 1)
        File "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/rdd.py", line 1360, in take
          res = self.context.runJob(self, takeUpToNumLeft, p)
        File "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/context.py", line 1069, in runJob
          sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
        File "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
          answer, self.gateway_client, self.target_id, self.name)
        File "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/sql/utils.py", line 63, in deco
          return f(*a, **kw)
        File "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
          format(target_id, ".", name), value)
      Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
      : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2.0 (TID 2, localhost, executor driver): org.apache.spark.SparkException: Unexpected element type class org.apache.spark.streaming.pubsub.SparkPubsubMessage
              at org.apache.spark.api.python.PythonRDD$.org$apache$spark$api$python$PythonRDD$$write$1(PythonRDD.scala:221)
              at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
              at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
              at scala.collection.Iterator$class.foreach(Iterator.scala:891)
              at org.apache.spark.util.CompletionIterator.foreach(CompletionIterator.scala:25)
              at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224)
              at org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:561)
              at org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:346)
              at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
              at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:195)Driver stacktrace:
              at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1925)
              at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1913)
              at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1912)
              at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
              at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
              at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1912)
              at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948)
              at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948)
              at scala.Option.foreach(Option.scala:257)
              at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:948)
              at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2146)
              at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2095)
              at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2084)
              at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
              at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759)
              at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
              at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
              at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
              at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:153)
              at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
              at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
              at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
              at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
              at java.lang.reflect.Method.invoke(Method.java:498)
              at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
              at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
              at py4j.Gateway.invoke(Gateway.java:282)
              at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
              at py4j.commands.CallCommand.execute(CallCommand.java:79)
              at py4j.GatewayConnection.run(GatewayConnection.java:238)
              at java.lang.Thread.run(Thread.java:748)
      Caused by: org.apache.spark.SparkException: Unexpected element type class org.apache.spark.streaming.pubsub.SparkPubsubMessage
              at org.apache.spark.api.python.PythonRDD$.org$apache$spark$api$python$PythonRDD$$write$1(PythonRDD.scala:221)
              at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
              at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
              at scala.collection.Iterator$class.foreach(Iterator.scala:891)
              at org.apache.spark.util.CompletionIterator.foreach(CompletionIterator.scala:25)
              at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224)
              at org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:561)
              at org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:346)
              at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
              at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:195)
              at org.apache.spark.streaming.api.python.TransformFunction.callPythonTransformFunction(PythonDStream.scala:95)
              at org.apache.spark.streaming.api.python.TransformFunction.apply(PythonDStream.scala:78)
              at org.apache.spark.streaming.api.python.PythonDStream$$anonfun$callForeachRDD$1.apply(PythonDStream.scala:179)
              at org.apache.spark.streaming.api.python.PythonDStream$$anonfun$callForeachRDD$1.apply(PythonDStream.scala:179)
              at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
              at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
              at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
              at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416)
              at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
              at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
              at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
              at scala.util.Try$.apply(Try.scala:192)
              at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
              at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257)
              at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
              at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
              at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
              at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256)
              at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
              at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
              at java.lang.Thread.run(Thread.java:748)
      

      Seems that the receiver store data in internal format called SparkPubsubMessage format (https://github.com/apache/bahir/blob/62df1108145ee0305c5c7416a7dadeae5930aab8/streaming-pubsub/src/main/scala/org/apache/spark/streaming/pubsub/PubsubInputDStream.scala#L68)

       

      Is there a way to make RDD in python interpret the SparkPubsubMessage object ?

       

      Thanks a lot, feel free to ask details if needed  !

       

      Attachments

        Activity

          People

            Unassigned Unassigned
            ar-ms Abdul-Raheman MouhamadSultane
            Votes:
            0 Vote for this issue
            Watchers:
            1 Start watching this issue

            Dates

              Created:
              Updated: