Uploaded image for project: 'Apache Arrow'
  1. Apache Arrow
  2. ARROW-5220

[Python] index / unknown columns in specified schema in Table.from_pandas

    XMLWordPrintableJSON

Details

    Description

      The Table.from_pandas method allows to specify a schema ("This can be used to indicate the type of columns if we cannot infer it automatically.").

      But, if you also want to specify the type of the index, you get an error:

      df = pd.DataFrame({'a': [1, 2, 3], 'b': [0.1, 0.2, 0.3]})
      df.index = pd.Index(['a', 'b', 'c'], name='index')
      
      my_schema = pa.schema([('index', pa.string()),
                             ('a', pa.int64()),
                             ('b', pa.float64()),
                            ])
      
      table = pa.Table.from_pandas(df, schema=my_schema)
      

      gives KeyError: 'index' (because it tries to look up the "column names" from the schema in the dataframe, and thus does not find column 'index').

      This also has the consequence that re-using the schema does not work: table1 = pa.Table.from_pandas(df1); table2 = pa.Table.from_pandas(df2, schema=table1.schema)

      Extra note: also unknown columns in general give this error (column specified in the schema that are not in the dataframe).

      At least in pyarrow 0.11, this did not give an error (eg noticed this from the code in example in ARROW-3861). So before, unknown columns in the specified schema were ignored, while now they raise an error. Was this a conscious change?
      So before also specifying the index in the schema "worked" in the sense that it didn't raise an error, but it was also ignored, so didn't actually do what you would expect)

      Questions:

      • I think that we should support specifying the index in the passed schema ? So that the example above works (although this might be complicated with RangeIndex that is not serialized any more)
      • But what to do in general with additional columns in the schema that are not in the DataFrame? Are we fine with keep raising an error as it is now (the error message could be improved then)? Or do we again want to ignore them? (or, it could actually also add them as all nulls to the table)

      Attachments

        Activity

          People

            jorisvandenbossche Joris Van den Bossche
            jorisvandenbossche Joris Van den Bossche
            Votes:
            0 Vote for this issue
            Watchers:
            5 Start watching this issue

            Dates

              Created:
              Updated:
              Resolved:

              Time Tracking

                Estimated:
                Original Estimate - Not Specified
                Not Specified
                Remaining:
                Remaining Estimate - 0h
                0h
                Logged:
                Time Spent - 1h 50m
                1h 50m