Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Fixed
-
0.10.0
Description
Looks like the major bug from https://issues.apache.org/jira/browse/ARROW-1941 is back...
After I downgraded from 0.10.0 to 0.9.0, the error disappeared..
new_arrow_table = pa.concat_tables(my_arrow_tables) File "pyarrow/table.pxi", line 1562, in pyarrow.lib.concat_tables File "pyarrow/error.pxi", line 81, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Schema at index 2 was different:
In order to debug this I saved the first 4 arrow tables to 4 parquet files and inspected the parquet files. The parquet schema is identical, but the Pandas Metadata is different.
for i in range(5): pq.write_table(my_arrow_tables[i], "test" + str(i) + ".parquet")
It looks like a column which contains empty strings is getting typed as float64.
>>> test1.schema HoldingDetail_Id: string metadata -------- {b'pandas': b'{"index_columns": [], "column_indexes": [], "columns": [ {"name": "HoldingDetail_Id", "field_name": "HoldingDetail_Id", "pandas_type": "unicode", "numpy_type": "object", "metadata": null}, >>> test1[0] <Column name='HoldingDetail_Id' type=DataType(string)> [ [ "Z4", "SF", "J7", "W6", "L7", "Q9", "NE", "F7", >>> test2.schema HoldingDetail_Id: string metadata -------- {b'pandas': b'{"index_columns": [], "column_indexes": [], "columns": [ {"name": "HoldingDetail_Id", "field_name": "HoldingDetail_Id", "pandas_type": "unicode", "numpy_type": "float64", "metadata": null}, >>> test2[0] <Column name='HoldingDetail_Id' type=DataType(string)> [ [ "", "", "", "", "", "", "", "",
Attachments
Issue Links
- links to