Uploaded image for project: 'Apache Arrow'
  1. Apache Arrow
  2. ARROW-15286

[Python] pyarrow.dataset.FileSystemDataset.take method causes Segmentation Fault

    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Major
    • Resolution: Fixed
    • 5.0.0, 6.0.0, 6.0.1
    • 7.0.0
    • Python
    • Ubuntu 18.04, Python 3.8.6; macOS 11.6.2, Python 3.7.5

    Description

      Whenever I try calling the `pyarrow.dataset.FileSystemDataset.take` method, I get a segmentation fault. 

      I first encountered this using a proprietary dataset and recreated it with the UC Davis data below. I can successfully run the pyarrow.dataset.FileSystemDataset.to_batches method but not the take() method.

      Steps to recreate:

      !wget https://anson.ucdavis.edu/~clarkf/pems_parquet.zip
      !unzip -q pems_parquet.zip
      
      import pyarrow.dataset as ds
      file_path= "./pems_sorted/station=402264/part-r-00151-ddaee723-f3f6-4f25-a34b-3312172aa6d7.snappy.parquet"
      dataset = ds.dataset(file_path)
      dataset.take(1)
      >>> 80874 segmentation fault
      

      Creating a dataset from a directory as below also results in a segfault.

      dir_path = "./pems_sorted/station=402264"
      dataset = ds.dataset(dir_path)
      dataset.take(1)
      

      Environments tried:

      • Ubuntu 18.04, Python 3.8.6
      • macOS 11.6.2, Python 3.7.5

      Attachments

        Issue Links

          Activity

            People

              jorisvandenbossche Joris Van den Bossche
              dzubke Dustin Zubke
              Votes:
              0 Vote for this issue
              Watchers:
              3 Start watching this issue

              Dates

                Created:
                Updated:
                Resolved:

                Time Tracking

                  Estimated:
                  Original Estimate - Not Specified
                  Not Specified
                  Remaining:
                  Remaining Estimate - 0h
                  0h
                  Logged:
                  Time Spent - 1h
                  1h