Uploaded image for project: 'Apache Arrow'
  1. Apache Arrow
  2. ARROW-1459

[Python] PyArrow fails to load partitioned parquet files with non-primitive types

    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Major
    • Resolution: Fixed
    • 0.6.0
    • 0.7.0
    • Python
    • None

    Description

      When reading partitioned parquet files (tested with those produced by Spark), that contain lists, the resulting table seems to contain data loaded only from one partition. Primitive types seems to be loaded correctly.

      It can be reproduced using following code (arrow 0.6.0, spark 2.1.1):

      >>> df = spark.createDataFrame(list(zip(np.arange(10).tolist(), np.arange(20).reshape((10,2)).tolist())))
      >>> df.toPandas()
         _1        _2
      0   0    [0, 1]
      1   1    [2, 3]
      2   2    [4, 5]
      3   3    [6, 7]
      4   4    [8, 9]
      5   5  [10, 11]
      6   6  [12, 13]
      7   7  [14, 15]
      8   8  [16, 17]
      9   9  [18, 19]
      >>> df.repartition(2).write.parquet('df_parts.parquet')
      >>> pq.read_table('df_parts.parquet').to_pandas()
         _1        _2
      0   0    [0, 1]
      1   2    [4, 5]
      2   4    [8, 9]
      3   6  [12, 13]
      4   8  [16, 17]
      5   1    [0, 1]
      6   3    [4, 5]
      7   5    [8, 9]
      8   7  [12, 13]
      9   9  [16, 17]
      

      When the data is loaded using Spark or coalesced into one partition, everything works as expected:

      >>> spark.read.parquet('df_parts.parquet').toPandas()
         _1        _2
      0   1    [2, 3]
      1   3    [6, 7]
      2   5  [10, 11]
      3   7  [14, 15]
      4   9  [18, 19]
      5   0    [0, 1]
      6   2    [4, 5]
      7   4    [8, 9]
      8   6  [12, 13]
      9   8  [16, 17]
      >>> df.coalesce(1).write.parquet('df_single.parquet')
      >>> pq.read_table('df_single.parquet').to_pandas()
         _1        _2
      0   0    [0, 1]
      1   1    [2, 3]
      2   2    [4, 5]
      3   3    [6, 7]
      4   4    [8, 9]
      5   5  [10, 11]
      6   6  [12, 13]
      7   7  [14, 15]
      8   8  [16, 17]
      9   9  [18, 19]
      

      Attachments

        Activity

          People

            wesm Wes McKinney
            jonasamrich Jonas Amrich
            Votes:
            0 Vote for this issue
            Watchers:
            4 Start watching this issue

            Dates

              Created:
              Updated:
              Resolved: