Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Fixed
-
None
Description
See eg https://github.com/ursacomputing/crossbow/runs/1804464537, failure looks like:
____________ ERROR collecting tests/io/dask/dataframe/test_read.py _____________ tests/io/dask/dataframe/test_read.py:185: in <module> @pytest.mark.parametrize("col", get_dataframe_not_nested().columns) kartothek/core/testing.py:65: in get_dataframe_not_nested "unicode": pd.Series(["Ö"], dtype=np.unicode), /opt/conda/envs/arrow/lib/python3.7/site-packages/pandas/core/series.py:335: in __init__ data = sanitize_array(data, index, dtype, copy, raise_cast_failure=True) /opt/conda/envs/arrow/lib/python3.7/site-packages/pandas/core/construction.py:480: in sanitize_array subarr = _try_cast(data, dtype, copy, raise_cast_failure) /opt/conda/envs/arrow/lib/python3.7/site-packages/pandas/core/construction.py:587: in _try_cast maybe_cast_to_integer_array(arr, dtype) /opt/conda/envs/arrow/lib/python3.7/site-packages/pandas/core/dtypes/cast.py:1723: in maybe_cast_to_integer_array casted = np.array(arr, dtype=dtype, copy=copy) E ValueError: invalid literal for int() with base 10: 'Ö'
So it seems that pd.Series(["Ö"], dtype=np.unicode) stopped working with numpy 1.20.0