Details
-
Improvement
-
Status: Resolved
-
Major
-
Resolution: Fixed
-
None
Description
Looks like there is no way to execute an expression on filtered data in python.
Basically, I cannot pass `SelectionVector` to projector's `evaluate` method
```python
import pyarrow as pa
import pyarrow.gandiva as gandiva
table = pa.Table.from_arrays([pa.array([1., 31., 46., 3., 57., 44., 22.]),
pa.array([5., 45., 36., 73.,
83., 23., 76.])],
['a', 'b'])
builder = gandiva.TreeExprBuilder()
node_a = builder.make_field(table.schema.field("a"))
node_b = builder.make_field(table.schema.field("b"))
fifty = builder.make_literal(50.0, pa.float64())
eleven = builder.make_literal(11.0, pa.float64())
cond_1 = builder.make_function("less_than", [node_a, fifty], pa.bool_())
cond_2 = builder.make_function("greater_than", [node_a, node_b],
pa.bool_())
cond_3 = builder.make_function("less_than", [node_b, eleven], pa.bool_())
cond = builder.make_or([builder.make_and([cond_1, cond_2]), cond_3])
condition = builder.make_condition(cond)
filter = gandiva.make_filter(table.schema, condition)
filterResult = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) --> filterResult has type SelectionVector
print(result)
sum = builder.make_function("add", [node_a, node_b], pa.float64())
field_result = pa.field("c", pa.float64())
expr = builder.make_expression(sum, field_result)
projector = gandiva.make_projector(
table.schema, [expr], pa.default_memory_pool())
r, = projector.evaluate(table.to_batches()[0], result) --> Here there is a problem that I don't know how to use filterResult with projector
```
In C++, I see that it is possible to pass SelectionVector as second argument to projector::Evaluate: https://github.com/apache/arrow/blob/c5fa23ea0e15abe47b35524fa6a79c7b8c160fa0/cpp/src/gandiva/tests/filter_project_test.cc#L270
Meanwhile, it looks like it is impossible in `gandiva.pyx`: https://github.com/apache/arrow/blob/a4eb08d54ee0d4c0d0202fa0a2dfa8af7aad7a05/python/pyarrow/gandiva.pyx#L154
Attachments
Issue Links
- links to