Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-27621

Calling transform() method on a LinearRegressionModel throws NoSuchElementException

    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Minor
    • Resolution: Fixed
    • 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2
    • 2.3.4, 2.4.4, 3.0.0
    • ML
    • None

    Description

      When transform(...) method is called on a LinearRegressionModel created directly with the coefficients and intercepts, the following exception is encountered.

      java.util.NoSuchElementException: Failed to find a default value for loss at org.apache.spark.ml.param.Params$$anonfun$getOrDefault$2.apply(params.scala:780) at org.apache.spark.ml.param.Params$$anonfun$getOrDefault$2.apply(params.scala:780) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.ml.param.Params$class.getOrDefault(params.scala:779) at org.apache.spark.ml.PipelineStage.getOrDefault(Pipeline.scala:42) at org.apache.spark.ml.param.Params$class.$(params.scala:786) at org.apache.spark.ml.PipelineStage.$(Pipeline.scala:42) at org.apache.spark.ml.regression.LinearRegressionParams$class.validateAndTransformSchema(LinearRegression.scala:111) at org.apache.spark.ml.regression.LinearRegressionModel.validateAndTransformSchema(LinearRegression.scala:637) at org.apache.spark.ml.PredictionModel.transformSchema(Predictor.scala:192) at org.apache.spark.ml.PipelineModel$$anonfun$transformSchema$5.apply(Pipeline.scala:311) at org.apache.spark.ml.PipelineModel$$anonfun$transformSchema$5.apply(Pipeline.scala:311) at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57) at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66) at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:186) at org.apache.spark.ml.PipelineModel.transformSchema(Pipeline.scala:311) at org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:74) at org.apache.spark.ml.PipelineModel.transform(Pipeline.scala:305)
      

      This is because validateAndTransformSchema() is called both during training and scoring phases, but the checks against the training related params like loss should really be performed during training phase only, I think, please correct me if I'm missing anything.

      This issue was first reported for mleap (combust/mleap#455) because basically when we serialize the Spark transformers for mleap, we only serialize the params that are relevant for scoring. We do have the option to de-serialize the serialized transformers back into Spark for scoring again, but in that case, we no longer have all the training params.

      Test to reproduce in PR: https://github.com/apache/spark/pull/24509

       

      Attachments

        Activity

          People

            ansarb Anca Sarb
            ansarb Anca Sarb
            Votes:
            0 Vote for this issue
            Watchers:
            2 Start watching this issue

            Dates

              Created:
              Updated:
              Resolved:

              Time Tracking

                Estimated:
                Original Estimate - 2h
                2h
                Remaining:
                Remaining Estimate - 2h
                2h
                Logged:
                Time Spent - Not Specified
                Not Specified