Index: solr/src/test/org/apache/solr/search/function/TestFunctionQuery.java =================================================================== --- solr/src/test/org/apache/solr/search/function/TestFunctionQuery.java (revision 1086097) +++ solr/src/test/org/apache/solr/search/function/TestFunctionQuery.java (working copy) @@ -20,7 +20,7 @@ import org.apache.lucene.index.FieldInvertState; import org.apache.lucene.search.DefaultSimilarity; import org.apache.lucene.search.FieldCache; -import org.apache.lucene.search.Similarity; +import org.apache.lucene.search.TFIDFSimilarity; import org.apache.solr.SolrTestCaseJ4; import org.junit.BeforeClass; import org.junit.Test; @@ -290,7 +290,7 @@ assertQ(req("fl","*,score","q", "{!func}docfreq('a_t','cow')", "fq","id:6"), "//float[@name='score']='3.0'"); assertQ(req("fl","*,score","q", "{!func}docfreq($field,$value)", "fq","id:6", "field","a_t", "value","cow"), "//float[@name='score']='3.0'"); assertQ(req("fl","*,score","q", "{!func}termfreq(a_t,cow)", "fq","id:6"), "//float[@name='score']='5.0'"); - Similarity similarity = new DefaultSimilarity(); + TFIDFSimilarity similarity = new DefaultSimilarity(); assertQ(req("fl","*,score","q", "{!func}idf(a_t,cow)", "fq","id:6"), "//float[@name='score']='" + similarity.idf(3,6) + "'"); assertQ(req("fl","*,score","q", "{!func}tf(a_t,cow)", "fq","id:6"), Index: solr/src/java/org/apache/solr/search/function/IDFValueSource.java =================================================================== --- solr/src/java/org/apache/solr/search/function/IDFValueSource.java (revision 1086097) +++ solr/src/java/org/apache/solr/search/function/IDFValueSource.java (working copy) @@ -21,6 +21,7 @@ import org.apache.lucene.index.IndexReader.AtomicReaderContext; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.Similarity; +import org.apache.lucene.search.TFIDFSimilarity; import org.apache.lucene.util.BytesRef; import org.apache.solr.util.ByteUtils; @@ -42,10 +43,16 @@ public DocValues getValues(Map context, AtomicReaderContext readerContext) throws IOException { IndexSearcher searcher = (IndexSearcher)context.get("searcher"); Similarity sim = searcher.getSimilarityProvider().get(field); + // nocommit: + // what to do? its an idf valuesource... we could generalize to sim.computeWeight though + // (which is idf for TF/IDF and something like it elsewhere) + if (!(sim instanceof TFIDFSimilarity)) { + throw new UnsupportedOperationException("only works with TF/IDF Similarity"); + } // todo: we need docFreq that takes a BytesRef String strVal = ByteUtils.UTF8toUTF16(indexedBytes); int docfreq = searcher.docFreq(new Term(indexedField, strVal)); - float idf = sim.idf(docfreq, searcher.maxDoc()); + float idf = ((TFIDFSimilarity)sim).idf(docfreq, searcher.maxDoc()); return new ConstDoubleDocValues(idf, this); } } Index: solr/src/java/org/apache/solr/search/function/TFValueSource.java =================================================================== --- solr/src/java/org/apache/solr/search/function/TFValueSource.java (revision 1086097) +++ solr/src/java/org/apache/solr/search/function/TFValueSource.java (working copy) @@ -22,6 +22,7 @@ import org.apache.lucene.search.DocIdSetIterator; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.Similarity; +import org.apache.lucene.search.TFIDFSimilarity; import org.apache.lucene.util.BytesRef; import org.apache.solr.common.SolrException; @@ -42,8 +43,14 @@ public DocValues getValues(Map context, AtomicReaderContext readerContext) throws IOException { Fields fields = readerContext.reader.fields(); final Terms terms = fields.terms(field); - final Similarity similarity = ((IndexSearcher)context.get("searcher")).getSimilarityProvider().get(field); - + // nocommit: + // what to do? its a TF valuesource... + final Similarity sim = ((IndexSearcher)context.get("searcher")).getSimilarityProvider().get(field); + if (!(sim instanceof TFIDFSimilarity)) { + throw new UnsupportedOperationException("only works with TF/IDF Similarity"); + } + final TFIDFSimilarity similarity = (TFIDFSimilarity) sim; + return new FloatDocValues(this) { DocsEnum docs ; int atDoc; Index: lucene/src/test/org/apache/lucene/search/payloads/TestPayloadNearQuery.java =================================================================== --- lucene/src/test/org/apache/lucene/search/payloads/TestPayloadNearQuery.java (revision 1086097) +++ lucene/src/test/org/apache/lucene/search/payloads/TestPayloadNearQuery.java (working copy) @@ -17,7 +17,6 @@ */ import java.io.IOException; import java.io.Reader; -import java.util.Collection; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.MockTokenizer; @@ -45,6 +44,7 @@ import org.apache.lucene.store.Directory; import org.apache.lucene.util.English; import org.apache.lucene.util.LuceneTestCase; +import org.apache.lucene.util.PerReaderTermState; import org.apache.lucene.search.Explanation.IDFExplanation; @@ -338,7 +338,7 @@ // idf used for phrase queries @Override - public IDFExplanation idfExplain(Collection terms, IndexSearcher searcher) throws IOException { + public IDFExplanation idfExplain(PerReaderTermState states[], IndexSearcher searcher) throws IOException { return new IDFExplanation() { @Override public float getIdf() { Index: lucene/src/test/org/apache/lucene/search/spans/JustCompileSearchSpans.java =================================================================== --- lucene/src/test/org/apache/lucene/search/spans/JustCompileSearchSpans.java (revision 1086097) +++ lucene/src/test/org/apache/lucene/search/spans/JustCompileSearchSpans.java (working copy) @@ -135,8 +135,8 @@ static final class JustCompileSpanScorer extends SpanScorer { protected JustCompileSpanScorer(Spans spans, Weight weight, - Similarity similarity, byte[] norms) throws IOException { - super(spans, weight, similarity, norms); + Similarity similarity, String field, AtomicReaderContext context) throws IOException { + super(spans, weight, similarity, field, context); } @Override Index: lucene/src/test/org/apache/lucene/search/JustCompileSearch.java =================================================================== --- lucene/src/test/org/apache/lucene/search/JustCompileSearch.java (revision 1086097) +++ lucene/src/test/org/apache/lucene/search/JustCompileSearch.java (working copy) @@ -187,8 +187,8 @@ static final class JustCompilePhraseScorer extends PhraseScorer { JustCompilePhraseScorer(Weight weight, PhraseQuery.PostingsAndFreq[] postings, - Similarity similarity, byte[] norms) { - super(weight, postings, similarity, norms); + Similarity similarity, String field, AtomicReaderContext context) throws IOException { + super(weight, postings, similarity, field, context); } @Override @@ -240,7 +240,8 @@ } } - static final class JustCompileSimilarity extends Similarity { + // nocommit: extend the Base Similarity here? + static final class JustCompileSimilarity extends TFIDFSimilarity { @Override public float idf(int docFreq, int numDocs) { Index: lucene/src/test/org/apache/lucene/search/TestSimilarity.java =================================================================== --- lucene/src/test/org/apache/lucene/search/TestSimilarity.java (revision 1086097) +++ lucene/src/test/org/apache/lucene/search/TestSimilarity.java (working copy) @@ -18,8 +18,9 @@ */ import org.apache.lucene.util.LuceneTestCase; +import org.apache.lucene.util.PerReaderTermState; + import java.io.IOException; -import java.util.Collection; import org.apache.lucene.index.FieldInvertState; import org.apache.lucene.index.IndexReader; @@ -43,12 +44,12 @@ public float queryNorm(float sumOfSquaredWeights) { return 1.0f; } public float coord(int overlap, int maxOverlap) { return 1.0f; } public Similarity get(String field) { - return new Similarity() { + return new DefaultSimilarity() { @Override public float computeNorm(FieldInvertState state) { return state.getBoost(); } @Override public float tf(float freq) { return freq; } @Override public float sloppyFreq(int distance) { return 2.0f; } @Override public float idf(int docFreq, int numDocs) { return 1.0f; } - @Override public IDFExplanation idfExplain(Collection terms, IndexSearcher searcher) throws IOException { + @Override public IDFExplanation idfExplain(PerReaderTermState[] stats, IndexSearcher searcher) throws IOException { return new IDFExplanation() { @Override public float getIdf() { Index: lucene/src/test/org/apache/lucene/search/MockLMSimilarity.java =================================================================== --- lucene/src/test/org/apache/lucene/search/MockLMSimilarity.java (revision 0) +++ lucene/src/test/org/apache/lucene/search/MockLMSimilarity.java (revision 0) @@ -0,0 +1,192 @@ +package org.apache.lucene.search; + +/** + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +import java.io.IOException; + +import org.apache.lucene.index.FieldInvertState; +import org.apache.lucene.index.MultiFields; +import org.apache.lucene.index.IndexReader.AtomicReaderContext; +import org.apache.lucene.search.Explanation.IDFExplanation; +import org.apache.lucene.util.PerReaderTermState; +import org.apache.lucene.util.SmallFloat; + +/** + * Dirichlet LM Similarity. + *

+ * This uses Terrier's modified formula "Bayesian smoothing with Dirichlet Prior" (which ensures only positive scores) + * from Zhai & Lafferty's A Study of Smoothing Methods for Language Models Applied to Information Retrieval. + * The formula has been modified in several ways: + *

+ *

+ * + * log(1 + (tf/(mu * (totalTermFrequency / sumOfTotalTermFrequency)))) + log(mu / (numTerms + mu)) + * + *

+ * NOTE: to use this Similarity, use MockLMSimilarityProvider (as this formula already incorporates coord() + * and currently depends upon a disabled queryNorm) + */ +public class MockLMSimilarity extends Similarity { + // TODO: the norm table can probably be per-sim so you can configure this. + // its also pretty nice that we don't bake the parameter into the index... you can tune it at runtime. + private static final float mu = 2000f; + + /** + * Our normalization is log(mu / (doclen + mu)) + * currently we put doclen into the boost byte (divided by boost) for simple quantization + * our decoder precomputes the full formula into the norm table + */ + @Override + public float computeNorm(FieldInvertState state) { + final int numTerms = state.getLength() - state.getNumOverlap(); + return numTerms / state.getBoost(); + } + + /** Cache of decoded bytes. */ + private static final float[] NORM_TABLE = new float[256]; + + static { + for (int i = 0; i < 256; i++) { + float doclen = SmallFloat.byte315ToFloat((byte)i); + NORM_TABLE[i] = (float) Math.log(mu / (doclen + mu)); + } + } + + @Override + public float decodeNormValue(byte b) { + return NORM_TABLE[b & 0xFF]; + } + + @Override + public byte encodeNormValue(float f) { + return SmallFloat.floatToByte315(f); + } + + @Override + public float sloppyFreq(int distance) { + return 1.0f / (distance + 1); + } + + // weight for a term as 1 / (mu * (totalTermFrequency / sumOfTotalTermFrequency)) + // nocommit: nuke IDFExplanation! + // nocommit: evil how we shove this crap in weight and unsquare it.. need to generalize weight + @Override + public IDFExplanation computeWeight(IndexSearcher searcher, String fieldName, PerReaderTermState... termStats) throws IOException { + float value = 0.0f; + final StringBuilder exp = new StringBuilder(); + final long sumOfTotalTermFreq = MultiFields.getTerms(searcher.getIndexReader(), fieldName).getSumTotalTermFreq(); + + for (final PerReaderTermState stat : termStats ) { + final long totalTermFrequency = stat.totalTermFreq(); + value += 1 / (mu * (totalTermFrequency+1L/(double)(sumOfTotalTermFreq+1L))); + exp.append(" "); + exp.append(totalTermFrequency); + } + + final float idfValue = value; + return new IDFExplanation() { + @Override + public float getIdf() { + return idfValue; + } + @Override + public String explain() { + return exp.toString(); + } + }; + } + + @Override + public ExactDocScorer exactDocScorer(Weight weight, String fieldName, AtomicReaderContext context) throws IOException { + float unsquaredWeight = (float) Math.sqrt(weight.getValue()); + final byte norms[] = context.reader.norms(fieldName); + return norms == null + ? new RawExactMockLMDocScorer(unsquaredWeight) + : new ExactMockLMDocScorer(unsquaredWeight, norms); + } + + @Override + public SloppyDocScorer sloppyDocScorer(Weight weight, String fieldName, AtomicReaderContext context) throws IOException { + return new SloppyMockLMDocScorer((float) Math.sqrt(weight.getValue()), context.reader.norms(fieldName)); + } + + /** + * log(1 + (tf/(mu * (totalTermFrequency / sumOfTotalTermFrequency))) ) + log(mu / (numTerms + mu)) + */ + private class ExactMockLMDocScorer extends ExactDocScorer { + private final float weightValue; + private final byte[] norms; + private static final int SCORE_CACHE_SIZE = 32; + private float[] scoreCache = new float[SCORE_CACHE_SIZE]; + + ExactMockLMDocScorer(float weightValue, byte norms[]) { + this.weightValue = weightValue; + this.norms = norms; + for (int i = 0; i < SCORE_CACHE_SIZE; i++) + scoreCache[i] = (float)Math.log(1 + (i*weightValue)); + } + + @Override + public float score(int doc, int freq) { + return freq < SCORE_CACHE_SIZE // check cache + ? scoreCache[freq] + decodeNormValue(norms[doc]) // cache hit + : (float)Math.log(1 + (freq*weightValue)) + decodeNormValue(norms[doc]); // cache miss + } + } + + private class RawExactMockLMDocScorer extends ExactDocScorer { + private final float weightValue; + private static final int SCORE_CACHE_SIZE = 32; + private float[] scoreCache = new float[SCORE_CACHE_SIZE]; + + RawExactMockLMDocScorer(float weightValue) { + this.weightValue = weightValue; + for (int i = 0; i < SCORE_CACHE_SIZE; i++) + scoreCache[i] = (float)Math.log(1 + (i*weightValue)); + } + + @Override + public float score(int doc, int freq) { + return freq < SCORE_CACHE_SIZE // check cache + ? scoreCache[freq] // cache hit + : (float)Math.log(1 + (freq*weightValue)); // cache miss + } + } + + // TODO: worth specializing? + private class SloppyMockLMDocScorer extends SloppyDocScorer { + private final float weightValue; + private final byte[] norms; + + SloppyMockLMDocScorer(float weightValue, byte norms[]) { + this.weightValue = weightValue; + this.norms = norms; + } + + @Override + public float score(int doc, float freq) { + final float norm = (norms == null) ? 0 : decodeNormValue(norms[doc]); + return (float)Math.log(1 + (freq*weightValue)) + norm; + } + } +} Property changes on: lucene\src\test\org\apache\lucene\search\MockLMSimilarity.java ___________________________________________________________________ Added: svn:eol-style + native Index: lucene/src/test/org/apache/lucene/search/TestSimilarityProvider.java =================================================================== --- lucene/src/test/org/apache/lucene/search/TestSimilarityProvider.java (revision 1086097) +++ lucene/src/test/org/apache/lucene/search/TestSimilarityProvider.java (working copy) @@ -105,7 +105,7 @@ } } - private class Sim1 extends Similarity { + private class Sim1 extends TFIDFSimilarity { @Override public float computeNorm(FieldInvertState state) { return 1f; @@ -127,7 +127,7 @@ } } - private class Sim2 extends Similarity { + private class Sim2 extends TFIDFSimilarity { @Override public float computeNorm(FieldInvertState state) { return 10f; Index: lucene/src/test/org/apache/lucene/search/MockLMSimilarityProvider.java =================================================================== --- lucene/src/test/org/apache/lucene/search/MockLMSimilarityProvider.java (revision 0) +++ lucene/src/test/org/apache/lucene/search/MockLMSimilarityProvider.java (revision 0) @@ -0,0 +1,41 @@ +package org.apache.lucene.search; + +/** + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/** + * SimilarityProvider for {@link MockLMSimilarity} + *

+ */ +public class MockLMSimilarityProvider implements SimilarityProvider { + private static final Similarity impl = new MockLMSimilarity(); + + public float coord(int overlap, int maxOverlap) { + return 1f; + } + + public float queryNorm(float sumOfSquaredWeights) { + return 1f; + } + + public Similarity get(String field) { + return impl; + } +} Property changes on: lucene\src\test\org\apache\lucene\search\MockLMSimilarityProvider.java ___________________________________________________________________ Added: svn:eol-style + native Index: lucene/src/test/org/apache/lucene/search/TestMultiPhraseQuery.java =================================================================== --- lucene/src/test/org/apache/lucene/search/TestMultiPhraseQuery.java (revision 1086097) +++ lucene/src/test/org/apache/lucene/search/TestMultiPhraseQuery.java (working copy) @@ -25,6 +25,7 @@ import org.apache.lucene.search.Explanation.IDFExplanation; import org.apache.lucene.store.Directory; import org.apache.lucene.util.BytesRef; +import org.apache.lucene.util.PerReaderTermState; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; @@ -302,7 +303,7 @@ return new DefaultSimilarity() { @Override - public IDFExplanation idfExplain(Collection terms, + public IDFExplanation idfExplain(PerReaderTermState stats[], IndexSearcher searcher) throws IOException { return new IDFExplanation() { Index: lucene/src/test/org/apache/lucene/index/TestOmitTf.java =================================================================== --- lucene/src/test/org/apache/lucene/index/TestOmitTf.java (revision 1086097) +++ lucene/src/test/org/apache/lucene/index/TestOmitTf.java (working copy) @@ -18,9 +18,9 @@ */ import java.io.IOException; -import java.util.Collection; import org.apache.lucene.util.LuceneTestCase; +import org.apache.lucene.util.PerReaderTermState; import org.apache.lucene.util._TestUtil; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.MockAnalyzer; @@ -39,13 +39,13 @@ public float queryNorm(float sumOfSquaredWeights) { return 1.0f; } public float coord(int overlap, int maxOverlap) { return 1.0f; } public Similarity get(String field) { - return new Similarity() { + return new TFIDFSimilarity() { @Override public float computeNorm(FieldInvertState state) { return state.getBoost(); } @Override public float tf(float freq) { return freq; } @Override public float sloppyFreq(int distance) { return 2.0f; } @Override public float idf(int docFreq, int numDocs) { return 1.0f; } - @Override public IDFExplanation idfExplain(Collection terms, IndexSearcher searcher) throws IOException { + @Override public IDFExplanation idfExplain(PerReaderTermState[] terms, IndexSearcher searcher) throws IOException { return new IDFExplanation() { @Override public float getIdf() { Index: lucene/src/java/org/apache/lucene/search/ScoringRewrite.java =================================================================== --- lucene/src/java/org/apache/lucene/search/ScoringRewrite.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/ScoringRewrite.java (working copy) @@ -151,12 +151,12 @@ if (e < 0 ) { // duplicate term: update docFreq final int pos = (-e)-1; - array.termState[pos].register(state, readerContext.ord, termsEnum.docFreq()); + array.termState[pos].register(state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq()); assert array.boost[pos] == boostAtt.getBoost() : "boost should be equal in all segment TermsEnums"; } else { // new entry: we populate the entry initially array.boost[e] = boostAtt.getBoost(); - array.termState[e] = new PerReaderTermState(topReaderContext, state, readerContext.ord, termsEnum.docFreq()); + array.termState[e] = new PerReaderTermState(topReaderContext, state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq()); ScoringRewrite.this.checkMaxClauseCount(terms.size()); } return true; Index: lucene/src/java/org/apache/lucene/search/Similarity.java =================================================================== --- lucene/src/java/org/apache/lucene/search/Similarity.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/Similarity.java (working copy) @@ -19,12 +19,11 @@ import java.io.IOException; -import java.util.Collection; import org.apache.lucene.index.FieldInvertState; -import org.apache.lucene.index.Term; +import org.apache.lucene.index.IndexReader.AtomicReaderContext; import org.apache.lucene.search.Explanation.IDFExplanation; -import org.apache.lucene.util.SmallFloat; +import org.apache.lucene.util.PerReaderTermState; /** @@ -34,493 +33,6 @@ * Overriding computation of these components is a convenient * way to alter Lucene scoring. * - *

Suggested reading: - * - * Introduction To Information Retrieval, Chapter 6. - * - *

The following describes how Lucene scoring evolves from - * underlying information retrieval models to (efficient) implementation. - * We first brief on VSM Score, - * then derive from it Lucene's Conceptual Scoring Formula, - * from which, finally, evolves Lucene's Practical Scoring Function - * (the latter is connected directly with Lucene classes and methods). - * - *

Lucene combines - * - * Boolean model (BM) of Information Retrieval - * with - * - * Vector Space Model (VSM) of Information Retrieval - - * documents "approved" by BM are scored by VSM. - * - *

In VSM, documents and queries are represented as - * weighted vectors in a multi-dimensional space, - * where each distinct index term is a dimension, - * and weights are - * Tf-idf values. - * - *

VSM does not require weights to be Tf-idf values, - * but Tf-idf values are believed to produce search results of high quality, - * and so Lucene is using Tf-idf. - * Tf and Idf are described in more detail below, - * but for now, for completion, let's just say that - * for given term t and document (or query) x, - * Tf(t,x) varies with the number of occurrences of term t in x - * (when one increases so does the other) and - * idf(t) similarly varies with the inverse of the - * number of index documents containing term t. - * - *

VSM score of document d for query q is the - * - * Cosine Similarity - * of the weighted query vectors V(q) and V(d): - * - *
 
- * - * - * - *
- * - * - *
- * - * - * - * - * - *
- * cosine-similarity(q,d)   =   - * - * - * - * - * - *
V(q) · V(d)
–––––––––
|V(q)| |V(d)|
- *
- *
- *
- *
VSM Score
- *
- *
 
- * - * - * Where V(q) · V(d) is the - * dot product - * of the weighted vectors, - * and |V(q)| and |V(d)| are their - * Euclidean norms. - * - *

Note: the above equation can be viewed as the dot product of - * the normalized weighted vectors, in the sense that dividing - * V(q) by its euclidean norm is normalizing it to a unit vector. - * - *

Lucene refines VSM score for both search quality and usability: - *

    - *
  • Normalizing V(d) to the unit vector is known to be problematic in that - * it removes all document length information. - * For some documents removing this info is probably ok, - * e.g. a document made by duplicating a certain paragraph 10 times, - * especially if that paragraph is made of distinct terms. - * But for a document which contains no duplicated paragraphs, - * this might be wrong. - * To avoid this problem, a different document length normalization - * factor is used, which normalizes to a vector equal to or larger - * than the unit vector: doc-len-norm(d). - *
  • - * - *
  • At indexing, users can specify that certain documents are more - * important than others, by assigning a document boost. - * For this, the score of each document is also multiplied by its boost value - * doc-boost(d). - *
  • - * - *
  • Lucene is field based, hence each query term applies to a single - * field, document length normalization is by the length of the certain field, - * and in addition to document boost there are also document fields boosts. - *
  • - * - *
  • The same field can be added to a document during indexing several times, - * and so the boost of that field is the multiplication of the boosts of - * the separate additions (or parts) of that field within the document. - *
  • - * - *
  • At search time users can specify boosts to each query, sub-query, and - * each query term, hence the contribution of a query term to the score of - * a document is multiplied by the boost of that query term query-boost(q). - *
  • - * - *
  • A document may match a multi term query without containing all - * the terms of that query (this is correct for some of the queries), - * and users can further reward documents matching more query terms - * through a coordination factor, which is usually larger when - * more terms are matched: coord-factor(q,d). - *
  • - *
- * - *

Under the simplifying assumption of a single field in the index, - * we get Lucene's Conceptual scoring formula: - * - *
 
- * - * - * - *
- * - * - *
- * - * - * - * - * - * - *
- * score(q,d)   =   - * coord-factor(q,d) ·   - * query-boost(q) ·   - * - * - * - * - * - *
V(q) · V(d)
–––––––––
|V(q)|
- *
- *   ·   doc-len-norm(d) - *   ·   doc-boost(d) - *
- *
- *
- *
Lucene Conceptual Scoring Formula
- *
- *
 
- * - *

The conceptual formula is a simplification in the sense that (1) terms and documents - * are fielded and (2) boosts are usually per query term rather than per query. - * - *

We now describe how Lucene implements this conceptual scoring formula, and - * derive from it Lucene's Practical Scoring Function. - * - *

For efficient score computation some scoring components - * are computed and aggregated in advance: - * - *

    - *
  • Query-boost for the query (actually for each query term) - * is known when search starts. - *
  • - * - *
  • Query Euclidean norm |V(q)| can be computed when search starts, - * as it is independent of the document being scored. - * From search optimization perspective, it is a valid question - * why bother to normalize the query at all, because all - * scored documents will be multiplied by the same |V(q)|, - * and hence documents ranks (their order by score) will not - * be affected by this normalization. - * There are two good reasons to keep this normalization: - *
      - *
    • Recall that - * - * Cosine Similarity can be used find how similar - * two documents are. One can use Lucene for e.g. - * clustering, and use a document as a query to compute - * its similarity to other documents. - * In this use case it is important that the score of document d3 - * for query d1 is comparable to the score of document d3 - * for query d2. In other words, scores of a document for two - * distinct queries should be comparable. - * There are other applications that may require this. - * And this is exactly what normalizing the query vector V(q) - * provides: comparability (to a certain extent) of two or more queries. - *
    • - * - *
    • Applying query normalization on the scores helps to keep the - * scores around the unit vector, hence preventing loss of score data - * because of floating point precision limitations. - *
    • - *
    - *
  • - * - *
  • Document length norm doc-len-norm(d) and document - * boost doc-boost(d) are known at indexing time. - * They are computed in advance and their multiplication - * is saved as a single value in the index: norm(d). - * (In the equations below, norm(t in d) means norm(field(t) in doc d) - * where field(t) is the field associated with term t.) - *
  • - *
- * - *

Lucene's Practical Scoring Function is derived from the above. - * The color codes demonstrate how it relates - * to those of the conceptual formula: - * - *

- * - * - * - *
- * - * - *
- * - * - * - * - * - * - * - * - * - * - * - *
- * score(q,d)   =   - * coord(q,d)  ·  - * queryNorm(q)  ·  - * - * - * - * ( - * tf(t in d)  ·  - * idf(t)2  ·  - * t.getBoost() ·  - * norm(t,d) - * ) - *
t in q
- *
- *
- *
Lucene Practical Scoring Function
- *
- * - *

where - *

    - *
  1. - * - * tf(t in d) - * correlates to the term's frequency, - * defined as the number of times term t appears in the currently scored document d. - * Documents that have more occurrences of a given term receive a higher score. - * Note that tf(t in q) is assumed to be 1 and therefore it does not appear in this equation, - * However if a query contains twice the same term, there will be - * two term-queries with that same term and hence the computation would still be correct (although - * not very efficient). - * The default computation for tf(t in d) in - * {@link org.apache.lucene.search.DefaultSimilarity#tf(float) DefaultSimilarity} is: - * - *
     
    - * - * - * - * - * - *
    - * {@link org.apache.lucene.search.DefaultSimilarity#tf(float) tf(t in d)}   =   - * - * frequency½ - *
    - *
     
    - *
  2. - * - *
  3. - * - * idf(t) stands for Inverse Document Frequency. This value - * correlates to the inverse of docFreq - * (the number of documents in which the term t appears). - * This means rarer terms give higher contribution to the total score. - * idf(t) appears for t in both the query and the document, - * hence it is squared in the equation. - * The default computation for idf(t) in - * {@link org.apache.lucene.search.DefaultSimilarity#idf(int, int) DefaultSimilarity} is: - * - *
     
    - * - * - * - * - * - * - * - *
    - * {@link org.apache.lucene.search.DefaultSimilarity#idf(int, int) idf(t)}  =   - * - * 1 + log ( - * - * - * - * - * - *
    numDocs
    –––––––––
    docFreq+1
    - *
    - * ) - *
    - *
     
    - *
  4. - * - *
  5. - * - * coord(q,d) - * is a score factor based on how many of the query terms are found in the specified document. - * Typically, a document that contains more of the query's terms will receive a higher score - * than another document with fewer query terms. - * This is a search time factor computed in - * {@link SimilarityProvider#coord(int, int) coord(q,d)} - * by the SimilarityProvider in effect at search time. - *
     
    - *
  6. - * - *
  7. - * - * queryNorm(q) - * - * is a normalizing factor used to make scores between queries comparable. - * This factor does not affect document ranking (since all ranked documents are multiplied by the same factor), - * but rather just attempts to make scores from different queries (or even different indexes) comparable. - * This is a search time factor computed by the SimilarityProvider in effect at search time. - * - * The default computation in - * {@link org.apache.lucene.search.DefaultSimilarityProvider#queryNorm(float) DefaultSimilarityProvider} - * produces a Euclidean norm: - *
     
    - * - * - * - * - * - *
    - * queryNorm(q)   =   - * {@link org.apache.lucene.search.DefaultSimilarityProvider#queryNorm(float) queryNorm(sumOfSquaredWeights)} - *   =   - * - * - * - * - * - *
    1
    - * –––––––––––––– - *
    sumOfSquaredWeights½
    - *
    - *
     
    - * - * The sum of squared weights (of the query terms) is - * computed by the query {@link org.apache.lucene.search.Weight} object. - * For example, a {@link org.apache.lucene.search.BooleanQuery} - * computes this value as: - * - *
     
    - * - * - * - * - * - * - * - * - * - * - * - *
    - * {@link org.apache.lucene.search.Weight#sumOfSquaredWeights() sumOfSquaredWeights}   =   - * {@link org.apache.lucene.search.Query#getBoost() q.getBoost()} 2 - *  ·  - * - * - * - * ( - * idf(t)  ·  - * t.getBoost() - * ) 2 - *
    t in q
    - *
     
    - * - *
  8. - * - *
  9. - * - * t.getBoost() - * is a search time boost of term t in the query q as - * specified in the query text - * (see query syntax), - * or as set by application calls to - * {@link org.apache.lucene.search.Query#setBoost(float) setBoost()}. - * Notice that there is really no direct API for accessing a boost of one term in a multi term query, - * but rather multi terms are represented in a query as multi - * {@link org.apache.lucene.search.TermQuery TermQuery} objects, - * and so the boost of a term in the query is accessible by calling the sub-query - * {@link org.apache.lucene.search.Query#getBoost() getBoost()}. - *
     
    - *
  10. - * - *
  11. - * - * norm(t,d) encapsulates a few (indexing time) boost and length factors: - * - *
      - *
    • Document boost - set by calling - * {@link org.apache.lucene.document.Document#setBoost(float) doc.setBoost()} - * before adding the document to the index. - *
    • - *
    • Field boost - set by calling - * {@link org.apache.lucene.document.Fieldable#setBoost(float) field.setBoost()} - * before adding the field to a document. - *
    • - *
    • lengthNorm - computed - * when the document is added to the index in accordance with the number of tokens - * of this field in the document, so that shorter fields contribute more to the score. - * LengthNorm is computed by the Similarity class in effect at indexing. - *
    • - *
    - * The {@link #computeNorm} method is responsible for - * combining all of these factors into a single float. - * - *

    - * When a document is added to the index, all the above factors are multiplied. - * If the document has multiple fields with the same name, all their boosts are multiplied together: - * - *
     
    - * - * - * - * - * - * - * - * - * - * - * - *
    - * norm(t,d)   =   - * {@link org.apache.lucene.document.Document#getBoost() doc.getBoost()} - *  ·  - * lengthNorm - *  ·  - * - * - * - * {@link org.apache.lucene.document.Fieldable#getBoost() f.getBoost}() - *
    field f in d named as t
    - *
     
    - * However the resulted norm value is {@link #encodeNormValue(float) encoded} as a single byte - * before being stored. - * At search time, the norm byte value is read from the index - * {@link org.apache.lucene.store.Directory directory} and - * {@link #decodeNormValue(byte) decoded} back to a float norm value. - * This encoding/decoding, while reducing index size, comes with the price of - * precision loss - it is not guaranteed that decode(encode(x)) = x. - * For instance, decode(encode(0.89)) = 0.75. - *
     
    - * Compression of norm values to a single byte saves memory at search time, - * because once a field is referenced at search time, its norms - for - * all documents - are maintained in memory. - *
     
    - * The rationale supporting such lossy compression of norm values is that - * given the difficulty (and inaccuracy) of users to express their true information - * need by a query, only big differences matter. - *
     
    - * Last, note that search time is too late to modify this norm part of scoring, e.g. by - * using a different {@link Similarity} for search. - *
     
    - *

  12. - *
- * * @see org.apache.lucene.index.IndexWriterConfig#setSimilarityProvider(SimilarityProvider) * @see IndexSearcher#setSimilarityProvider(SimilarityProvider) */ @@ -528,20 +40,10 @@ public static final int NO_DOC_ID_PROVIDED = -1; - /** Cache of decoded bytes. */ - private static final float[] NORM_TABLE = new float[256]; - - static { - for (int i = 0; i < 256; i++) - NORM_TABLE[i] = SmallFloat.byte315ToFloat((byte)i); - } - /** Decodes a normalization factor stored in an index. * @see #encodeNormValue(float) */ - public float decodeNormValue(byte b) { - return NORM_TABLE[b & 0xFF]; // & 0xFF maps negative bytes to positive above 127 - } + public abstract float decodeNormValue(byte b); /** * Computes the normalization value for a field, given the accumulated @@ -569,40 +71,11 @@ public abstract float computeNorm(FieldInvertState state); /** Encodes a normalization factor for storage in an index. - * - *

The encoding uses a three-bit mantissa, a five-bit exponent, and - * the zero-exponent point at 15, thus - * representing values from around 7x10^9 to 2x10^-9 with about one - * significant decimal digit of accuracy. Zero is also represented. - * Negative numbers are rounded up to zero. Values too large to represent - * are rounded down to the largest representable value. Positive values too - * small to represent are rounded up to the smallest positive representable - * value. + * * @see org.apache.lucene.document.Field#setBoost(float) * @see org.apache.lucene.util.SmallFloat */ - public byte encodeNormValue(float f) { - return SmallFloat.floatToByte315(f); - } - - /** Computes a score factor based on a term or phrase's frequency in a - * document. This value is multiplied by the {@link #idf(int, int)} - * factor for each term in the query and these products are then summed to - * form the initial score for a document. - * - *

Terms and phrases repeated in a document indicate the topic of the - * document, so implementations of this method usually return larger values - * when freq is large, and smaller values when freq - * is small. - * - *

The default implementation calls {@link #tf(float)}. - * - * @param freq the frequency of a term within a document - * @return a score factor based on a term's within-document frequency - */ - public float tf(int freq) { - return tf((float)freq); - } + public abstract byte encodeNormValue(float f); /** Computes the amount of a sloppy phrase match, based on an edit distance. * This value is summed for each sloppy phrase match in a document to form @@ -619,125 +92,7 @@ */ public abstract float sloppyFreq(int distance); - /** Computes a score factor based on a term or phrase's frequency in a - * document. This value is multiplied by the {@link #idf(int, int)} - * factor for each term in the query and these products are then summed to - * form the initial score for a document. - * - *

Terms and phrases repeated in a document indicate the topic of the - * document, so implementations of this method usually return larger values - * when freq is large, and smaller values when freq - * is small. - * - * @param freq the frequency of a term within a document - * @return a score factor based on a term's within-document frequency - */ - public abstract float tf(float freq); - /** - * Computes a score factor for a simple term and returns an explanation - * for that score factor. - * - *

- * The default implementation uses: - * - *

-   * idf(docFreq, searcher.maxDoc());
-   * 
- * - * Note that {@link IndexSearcher#maxDoc()} is used instead of - * {@link org.apache.lucene.index.IndexReader#numDocs() IndexReader#numDocs()} because also - * {@link IndexSearcher#docFreq(Term)} is used, and when the latter - * is inaccurate, so is {@link IndexSearcher#maxDoc()}, and in the same direction. - * In addition, {@link IndexSearcher#maxDoc()} is more efficient to compute - * - * @param term the term in question - * @param searcher the document collection being searched - * @param docFreq externally computed docFreq for this term - * @return an IDFExplain object that includes both an idf score factor - and an explanation for the term. - * @throws IOException - */ - public IDFExplanation idfExplain(final Term term, final IndexSearcher searcher, int docFreq) throws IOException { - final int df = docFreq; - final int max = searcher.maxDoc(); - final float idf = idf(df, max); - return new IDFExplanation() { - @Override - public String explain() { - return "idf(docFreq=" + df + - ", maxDocs=" + max + ")"; - } - @Override - public float getIdf() { - return idf; - }}; - } - - /** - * This method forwards to {@link - * #idfExplain(Term,IndexSearcher,int)} by passing - * searcher.docFreq(term) as the docFreq. - */ - public IDFExplanation idfExplain(final Term term, final IndexSearcher searcher) throws IOException { - return idfExplain(term, searcher, searcher.docFreq(term)); - } - - /** - * Computes a score factor for a phrase. - * - *

- * The default implementation sums the idf factor for - * each term in the phrase. - * - * @param terms the terms in the phrase - * @param searcher the document collection being searched - * @return an IDFExplain object that includes both an idf - * score factor for the phrase and an explanation - * for each term. - * @throws IOException - */ - public IDFExplanation idfExplain(Collection terms, IndexSearcher searcher) throws IOException { - final int max = searcher.maxDoc(); - float idf = 0.0f; - final StringBuilder exp = new StringBuilder(); - for (final Term term : terms ) { - final int df = searcher.docFreq(term); - idf += idf(df, max); - exp.append(" "); - exp.append(term.text()); - exp.append("="); - exp.append(df); - } - final float fIdf = idf; - return new IDFExplanation() { - @Override - public float getIdf() { - return fIdf; - } - @Override - public String explain() { - return exp.toString(); - } - }; - } - - /** Computes a score factor based on a term's document frequency (the number - * of documents which contain the term). This value is multiplied by the - * {@link #tf(int)} factor for each term in the query and these products are - * then summed to form the initial score for a document. - * - *

Terms that occur in fewer documents are better indicators of topic, so - * implementations of this method usually return larger values for rare terms, - * and smaller values for common terms. - * - * @param docFreq the number of documents which contain the term - * @param numDocs the total number of documents in the collection - * @return a score factor based on the term's document frequency - */ - public abstract float idf(int docFreq, int numDocs); - - /** * Calculate a scoring factor based on the data in the payload. Overriding implementations * are responsible for interpreting what is in the payload. Lucene makes no assumptions about * what is in the byte array. @@ -758,5 +113,17 @@ { return 1; } - + + public abstract IDFExplanation computeWeight(IndexSearcher searcher, String fieldName, PerReaderTermState... termStats) throws IOException; + + public abstract ExactDocScorer exactDocScorer(Weight weight, String fieldName, AtomicReaderContext context) throws IOException; + public abstract SloppyDocScorer sloppyDocScorer(Weight weight, String fieldName, AtomicReaderContext context) throws IOException; + + public abstract class ExactDocScorer { + public abstract float score(int doc, int freq); + } + + public abstract class SloppyDocScorer { + public abstract float score(int doc, float freq); + } } Index: lucene/src/java/org/apache/lucene/search/payloads/PayloadNearQuery.java =================================================================== --- lucene/src/java/org/apache/lucene/search/payloads/PayloadNearQuery.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/payloads/PayloadNearQuery.java (working copy) @@ -145,7 +145,7 @@ @Override public Scorer scorer(AtomicReaderContext context, ScorerContext scorerContext) throws IOException { return new PayloadNearSpanScorer(query.getSpans(context), this, - similarity, context.reader.norms(query.getField())); + similarity, query.getField(), context); } } @@ -155,8 +155,8 @@ private int payloadsSeen; protected PayloadNearSpanScorer(Spans spans, Weight weight, - Similarity similarity, byte[] norms) throws IOException { - super(spans, weight, similarity, norms); + Similarity similarity, String field, AtomicReaderContext context) throws IOException { + super(spans, weight, similarity, field, context); this.spans = spans; } Index: lucene/src/java/org/apache/lucene/search/payloads/PayloadTermQuery.java =================================================================== --- lucene/src/java/org/apache/lucene/search/payloads/PayloadTermQuery.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/payloads/PayloadTermQuery.java (working copy) @@ -76,7 +76,7 @@ @Override public Scorer scorer(AtomicReaderContext context, ScorerContext scorerContext) throws IOException { return new PayloadTermSpanScorer((TermSpans) query.getSpans(context), - this, similarity, context.reader.norms(query.getField())); + this, similarity, query.getField(), context); } protected class PayloadTermSpanScorer extends SpanScorer { @@ -86,8 +86,8 @@ private final TermSpans termSpans; public PayloadTermSpanScorer(TermSpans spans, Weight weight, - Similarity similarity, byte[] norms) throws IOException { - super(spans, weight, similarity, norms); + Similarity similarity, String field, AtomicReaderContext context) throws IOException { + super(spans, weight, similarity, field, context); termSpans = spans; } Index: lucene/src/java/org/apache/lucene/search/spans/SpanWeight.java =================================================================== --- lucene/src/java/org/apache/lucene/search/spans/SpanWeight.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/spans/SpanWeight.java (working copy) @@ -18,13 +18,15 @@ */ import org.apache.lucene.index.IndexReader.AtomicReaderContext; +import org.apache.lucene.index.IndexReader.ReaderContext; import org.apache.lucene.index.Term; import org.apache.lucene.search.*; import org.apache.lucene.search.Explanation.IDFExplanation; +import org.apache.lucene.util.PerReaderTermState; import java.io.IOException; -import java.util.HashSet; import java.util.Set; +import java.util.TreeSet; /** * Expert-only. Public for use by other weight implementations @@ -45,10 +47,14 @@ this.similarity = searcher.getSimilarityProvider().get(query.getField()); this.query = query; - terms=new HashSet(); + terms=new TreeSet(); query.extractTerms(terms); - - idfExp = similarity.idfExplain(terms, searcher); + final ReaderContext context = searcher.getTopReaderContext(); + final PerReaderTermState states[] = new PerReaderTermState[terms.size()]; + int i = 0; + for (Term term : terms) + states[i++] = PerReaderTermState.build(context, term, true); + idfExp = similarity.computeWeight(searcher, query.getField(), states); idf = idfExp.getIdf(); } @@ -73,8 +79,7 @@ @Override public Scorer scorer(AtomicReaderContext context, ScorerContext scorerContext) throws IOException { - return new SpanScorer(query.getSpans(context), this, similarity, context.reader - .norms(query.getField())); + return new SpanScorer(query.getSpans(context), this, similarity, query.getField(), context); } @Override Index: lucene/src/java/org/apache/lucene/search/spans/SpanScorer.java =================================================================== --- lucene/src/java/org/apache/lucene/search/spans/SpanScorer.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/spans/SpanScorer.java (working copy) @@ -19,7 +19,9 @@ import java.io.IOException; +import org.apache.lucene.index.IndexReader.AtomicReaderContext; import org.apache.lucene.search.Explanation; +import org.apache.lucene.search.TFIDFSimilarity; import org.apache.lucene.search.Weight; import org.apache.lucene.search.Scorer; import org.apache.lucene.search.Similarity; @@ -29,22 +31,21 @@ */ public class SpanScorer extends Scorer { protected Spans spans; - protected byte[] norms; - protected float value; protected boolean more = true; protected int doc; protected float freq; protected final Similarity similarity; + protected final Similarity.SloppyDocScorer docScorer; - protected SpanScorer(Spans spans, Weight weight, Similarity similarity, byte[] norms) + protected SpanScorer(Spans spans, Weight weight, Similarity similarity, String field, AtomicReaderContext context) throws IOException { super(weight); this.similarity = similarity; + this.docScorer = similarity.sloppyDocScorer(weight, field, context); this.spans = spans; - this.norms = norms; - this.value = weight.getValue(); + if (this.spans.next()) { doc = -1; } else { @@ -94,8 +95,7 @@ @Override public float score() throws IOException { - float raw = similarity.tf(freq) * value; // raw score - return norms == null? raw : raw * similarity.decodeNormValue(norms[doc]); // normalize + return docScorer.score(doc, freq); } @Override @@ -105,15 +105,18 @@ /** This method is no longer an official member of {@link Scorer}, * but it is needed by SpanWeight to build an explanation. */ + // nocommit: die protected Explanation explain(final int doc) throws IOException { Explanation tfExplanation = new Explanation(); int expDoc = advance(doc); float phraseFreq = (expDoc == doc) ? freq : 0.0f; - tfExplanation.setValue(similarity.tf(phraseFreq)); - tfExplanation.setDescription("tf(phraseFreq=" + phraseFreq + ")"); - + if (similarity instanceof TFIDFSimilarity) { + TFIDFSimilarity tfidf = (TFIDFSimilarity) similarity; + tfExplanation.setValue(tfidf.tf(phraseFreq)); + tfExplanation.setDescription("tf(phraseFreq=" + phraseFreq + ")"); + } return tfExplanation; } Index: lucene/src/java/org/apache/lucene/search/SloppyPhraseScorer.java =================================================================== --- lucene/src/java/org/apache/lucene/search/SloppyPhraseScorer.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/SloppyPhraseScorer.java (working copy) @@ -20,16 +20,20 @@ import java.io.IOException; import java.util.HashMap; +import org.apache.lucene.index.IndexReader.AtomicReaderContext; + final class SloppyPhraseScorer extends PhraseScorer { private int slop; private PhrasePositions repeats[]; private PhrasePositions tmpPos[]; // for flipping repeating pps. private boolean checkedRepeats; - + private final Similarity similarity; + SloppyPhraseScorer(Weight weight, PhraseQuery.PostingsAndFreq[] postings, Similarity similarity, - int slop, byte[] norms) { - super(weight, postings, similarity, norms); + int slop, String field, AtomicReaderContext context) throws IOException { + super(weight, postings, similarity, field, context); this.slop = slop; + this.similarity = similarity; } /** Index: lucene/src/java/org/apache/lucene/search/MultiPhraseQuery.java =================================================================== --- lucene/src/java/org/apache/lucene/search/MultiPhraseQuery.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/MultiPhraseQuery.java (working copy) @@ -22,12 +22,14 @@ import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.IndexReader.AtomicReaderContext; +import org.apache.lucene.index.IndexReader.ReaderContext; import org.apache.lucene.index.Term; import org.apache.lucene.index.DocsEnum; import org.apache.lucene.index.DocsAndPositionsEnum; import org.apache.lucene.search.Explanation.IDFExplanation; import org.apache.lucene.util.ArrayUtil; import org.apache.lucene.util.BytesRef; +import org.apache.lucene.util.PerReaderTermState; import org.apache.lucene.util.ToStringUtils; import org.apache.lucene.util.PriorityQueue; import org.apache.lucene.util.Bits; @@ -140,15 +142,16 @@ public MultiPhraseWeight(IndexSearcher searcher) throws IOException { this.similarity = searcher.getSimilarityProvider().get(field); - + final ReaderContext context = searcher.getTopReaderContext(); + // compute idf - ArrayList allTerms = new ArrayList(); + ArrayList allTerms = new ArrayList(); for(final Term[] terms: termArrays) { for (Term term: terms) { - allTerms.add(term); + allTerms.add(PerReaderTermState.build(context, term, true)); } } - idfExp = similarity.idfExplain(allTerms, searcher); + idfExp = similarity.computeWeight(searcher, field, allTerms.toArray(new PerReaderTermState[allTerms.size()])); idf = idfExp.getIdf(); } @@ -223,8 +226,7 @@ } if (slop == 0) { - ExactPhraseScorer s = new ExactPhraseScorer(this, postingsFreqs, similarity, - reader.norms(field)); + ExactPhraseScorer s = new ExactPhraseScorer(this, postingsFreqs, similarity, field, context); if (s.noDocs) { return null; } else { @@ -232,13 +234,18 @@ } } else { return new SloppyPhraseScorer(this, postingsFreqs, similarity, - slop, reader.norms(field)); + slop, field, context); } } @Override public Explanation explain(AtomicReaderContext context, int doc) throws IOException { + //nocommit: fix explains + if (!(similarity instanceof TFIDFSimilarity)) + return new ComplexExplanation(); + final TFIDFSimilarity similarity = (TFIDFSimilarity) this.similarity; + ComplexExplanation result = new ComplexExplanation(); result.setDescription("weight("+getQuery()+" in "+doc+"), product of:"); Index: lucene/src/java/org/apache/lucene/search/PhraseScorer.java =================================================================== --- lucene/src/java/org/apache/lucene/search/PhraseScorer.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/PhraseScorer.java (working copy) @@ -19,6 +19,8 @@ import java.io.IOException; +import org.apache.lucene.index.IndexReader.AtomicReaderContext; + /** Expert: Scoring functionality for phrase queries. *
A document is considered matching if it contains the phrase-query terms * at "valid" positions. What "valid positions" are @@ -40,14 +42,12 @@ private float freq; //phrase frequency in current doc as computed by phraseFreq(). - protected final Similarity similarity; + protected final Similarity.SloppyDocScorer docScorer; PhraseScorer(Weight weight, PhraseQuery.PostingsAndFreq[] postings, - Similarity similarity, byte[] norms) { + Similarity similarity, String field, AtomicReaderContext context) throws IOException { super(weight); - this.similarity = similarity; - this.norms = norms; - this.value = weight.getValue(); + docScorer = similarity.sloppyDocScorer(weight, field, context); // convert tps to a list of phrase positions. // note: phrase-position differs from term-position in that its position @@ -107,9 +107,7 @@ @Override public float score() throws IOException { - //System.out.println("scoring " + first.doc); - float raw = similarity.tf(freq) * value; // raw score - return norms == null ? raw : raw * similarity.decodeNormValue(norms[first.doc]); // normalize + return docScorer.score(first.doc, freq); } @Override Index: lucene/src/java/org/apache/lucene/search/PhraseQuery.java =================================================================== --- lucene/src/java/org/apache/lucene/search/PhraseQuery.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/PhraseQuery.java (working copy) @@ -22,10 +22,14 @@ import java.util.ArrayList; import org.apache.lucene.index.IndexReader.AtomicReaderContext; +import org.apache.lucene.index.IndexReader.ReaderContext; import org.apache.lucene.index.Term; import org.apache.lucene.index.DocsAndPositionsEnum; import org.apache.lucene.index.IndexReader; +import org.apache.lucene.index.TermState; +import org.apache.lucene.index.TermsEnum; import org.apache.lucene.search.Explanation.IDFExplanation; +import org.apache.lucene.util.PerReaderTermState; import org.apache.lucene.util.ToStringUtils; import org.apache.lucene.util.ArrayUtil; import org.apache.lucene.util.Bits; @@ -143,12 +147,16 @@ private float queryNorm; private float queryWeight; private IDFExplanation idfExp; + private transient PerReaderTermState states[]; public PhraseWeight(IndexSearcher searcher) throws IOException { this.similarity = searcher.getSimilarityProvider().get(field); - - idfExp = similarity.idfExplain(terms, searcher); + final ReaderContext context = searcher.getTopReaderContext(); + states = new PerReaderTermState[terms.size()]; + for (int i = 0; i < terms.size(); i++) + states[i] = PerReaderTermState.build(context, terms.get(i), true); + idfExp = similarity.computeWeight(searcher, field, states); idf = idfExp.getIdf(); } @@ -183,21 +191,29 @@ final Bits delDocs = reader.getDeletedDocs(); for (int i = 0; i < terms.size(); i++) { final Term t = terms.get(i); + final TermState state = states[i].get(context.ord); + if (state == null) /* term doesnt exist in this segment */ + return null; DocsAndPositionsEnum postingsEnum = reader.termPositionsEnum(delDocs, t.field(), - t.bytes()); + t.bytes(), + state); // PhraseQuery on a field that did not index // positions. if (postingsEnum == null) { - if (reader.termDocsEnum(delDocs, t.field(), t.bytes()) != null) { + if (reader.termDocsEnum(delDocs, t.field(), t.bytes(), state) != null) { // term does exist, but has no positions throw new IllegalStateException("field \"" + t.field() + "\" was indexed with Field.omitTermFreqAndPositions=true; cannot run PhraseQuery (term=" + t.text() + ")"); } else { // term does not exist + // nocommit: should be impossible, state should be null? return null; } } - postingsFreqs[i] = new PostingsAndFreq(postingsEnum, reader.docFreq(t.field(), t.bytes()), positions.get(i).intValue()); + // get the docFreq without seeking + TermsEnum te = reader.fields().terms(field).getThreadTermsEnum(); + te.seek(t.bytes(), state); + postingsFreqs[i] = new PostingsAndFreq(postingsEnum, te.docFreq(), positions.get(i).intValue()); } // sort by increasing docFreq order @@ -206,8 +222,7 @@ } if (slop == 0) { // optimize exact case - ExactPhraseScorer s = new ExactPhraseScorer(this, postingsFreqs, similarity, - reader.norms(field)); + ExactPhraseScorer s = new ExactPhraseScorer(this, postingsFreqs, similarity, field, context); if (s.noDocs) { return null; } else { @@ -215,15 +230,18 @@ } } else { return - new SloppyPhraseScorer(this, postingsFreqs, similarity, slop, - reader.norms(field)); + new SloppyPhraseScorer(this, postingsFreqs, similarity, slop, field, context); } } @Override public Explanation explain(AtomicReaderContext context, int doc) throws IOException { - + //nocommit: fix explains + if (!(similarity instanceof TFIDFSimilarity)) + return new ComplexExplanation(); + final TFIDFSimilarity similarity = (TFIDFSimilarity) this.similarity; + ComplexExplanation result = new ComplexExplanation(); result.setDescription("weight("+getQuery()+" in "+doc+"), product of:"); Index: lucene/src/java/org/apache/lucene/search/TopTermsRewrite.java =================================================================== --- lucene/src/java/org/apache/lucene/search/TopTermsRewrite.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/TopTermsRewrite.java (working copy) @@ -101,14 +101,14 @@ if (t != null) { // if the term is already in the PQ, only update docFreq of term in PQ assert t.boost == boost : "boost should be equal in all segment TermsEnums"; - t.termState.register(state, readerContext.ord, termsEnum.docFreq()); + t.termState.register(state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq()); } else { // add new entry in PQ, we must clone the term, else it may get overwritten! st.bytes.copy(bytes); st.boost = boost; visitedTerms.put(st.bytes, st); assert st.termState.docFreq() == 0; - st.termState.register(state, readerContext.ord, termsEnum.docFreq()); + st.termState.register(state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq()); stQueue.offer(st); // possibly drop entries from queue if (stQueue.size() > maxSize) { Index: lucene/src/java/org/apache/lucene/search/ConstantScoreAutoRewrite.java =================================================================== --- lucene/src/java/org/apache/lucene/search/ConstantScoreAutoRewrite.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/ConstantScoreAutoRewrite.java (working copy) @@ -141,9 +141,9 @@ assert termState != null; if (pos < 0) { pos = (-pos)-1; - array.termState[pos].register(termState, readerContext.ord, termsEnum.docFreq()); + array.termState[pos].register(termState, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq()); } else { - array.termState[pos] = new PerReaderTermState(topReaderContext, termState, readerContext.ord, termsEnum.docFreq()); + array.termState[pos] = new PerReaderTermState(topReaderContext, termState, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq()); } return true; } Index: lucene/src/java/org/apache/lucene/search/TermQuery.java =================================================================== --- lucene/src/java/org/apache/lucene/search/TermQuery.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/TermQuery.java (working copy) @@ -50,16 +50,12 @@ private final IDFExplanation idfExp; private transient PerReaderTermState termStates; - public TermWeight(IndexSearcher searcher, PerReaderTermState termStates, int docFreq) + public TermWeight(IndexSearcher searcher, PerReaderTermState termStates) throws IOException { assert termStates != null : "PerReaderTermState must not be null"; this.termStates = termStates; this.similarity = searcher.getSimilarityProvider().get(term.field()); - if (docFreq != -1) { - idfExp = similarity.idfExplain(term, searcher, docFreq); - } else { - idfExp = similarity.idfExplain(term, searcher); - } + idfExp = similarity.computeWeight(searcher, term.field(), termStates); idf = idfExp.getIdf(); } @@ -98,7 +94,7 @@ } final DocsEnum docs = reader.termDocsEnum(reader.getDeletedDocs(), field, term.bytes(), state); assert docs != null; - return new TermScorer(this, docs, similarity, context.reader.norms(field)); + return new TermScorer(this, docs, similarity, field, context); } private boolean termNotInReader(IndexReader reader, String field, BytesRef bytes) throws IOException { @@ -110,6 +106,11 @@ @Override public Explanation explain(AtomicReaderContext context, int doc) throws IOException { + //nocommit: fix explains + if (!(similarity instanceof TFIDFSimilarity)) + return new ComplexExplanation(); + final TFIDFSimilarity similarity = (TFIDFSimilarity) this.similarity; + final IndexReader reader = context.reader; ComplexExplanation result = new ComplexExplanation(); @@ -214,20 +215,20 @@ @Override public Weight createWeight(IndexSearcher searcher) throws IOException { final ReaderContext context = searcher.getTopReaderContext(); - final int weightDocFreq; final PerReaderTermState termState; if (perReaderTermState == null || perReaderTermState.topReaderContext != context) { // make TermQuery single-pass if we don't have a PRTS or if the context differs! termState = PerReaderTermState.build(context, term, true); // cache term lookups! - // we must not ignore the given docFreq - if set use the given value - weightDocFreq = docFreq == -1 ? termState.docFreq() : docFreq; } else { // PRTS was pre-build for this IS termState = this.perReaderTermState; - weightDocFreq = docFreq; } + + // we must not ignore the given docFreq - if set use the given value (lie) + if (docFreq != -1) + termState.setDocFreq(docFreq); - return new TermWeight(searcher, termState, weightDocFreq); + return new TermWeight(searcher, termState); } @Override Index: lucene/src/java/org/apache/lucene/search/TFIDFSimilarity.java =================================================================== --- lucene/src/java/org/apache/lucene/search/TFIDFSimilarity.java (revision 0) +++ lucene/src/java/org/apache/lucene/search/TFIDFSimilarity.java (revision 0) @@ -0,0 +1,787 @@ +package org.apache.lucene.search; + +/** + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +import java.io.IOException; +import java.io.Serializable; + +import org.apache.lucene.index.IndexReader.AtomicReaderContext; +import org.apache.lucene.index.Term; +import org.apache.lucene.search.Explanation.IDFExplanation; +import org.apache.lucene.util.PerReaderTermState; +import org.apache.lucene.util.SmallFloat; + + +/** + * Expert: Scoring API. + * + *

Similarity defines the components of Lucene scoring. + * Overriding computation of these components is a convenient + * way to alter Lucene scoring. + * + *

Suggested reading: + * + * Introduction To Information Retrieval, Chapter 6. + * + *

The following describes how Lucene scoring evolves from + * underlying information retrieval models to (efficient) implementation. + * We first brief on VSM Score, + * then derive from it Lucene's Conceptual Scoring Formula, + * from which, finally, evolves Lucene's Practical Scoring Function + * (the latter is connected directly with Lucene classes and methods). + * + *

Lucene combines + * + * Boolean model (BM) of Information Retrieval + * with + * + * Vector Space Model (VSM) of Information Retrieval - + * documents "approved" by BM are scored by VSM. + * + *

In VSM, documents and queries are represented as + * weighted vectors in a multi-dimensional space, + * where each distinct index term is a dimension, + * and weights are + * Tf-idf values. + * + *

VSM does not require weights to be Tf-idf values, + * but Tf-idf values are believed to produce search results of high quality, + * and so Lucene is using Tf-idf. + * Tf and Idf are described in more detail below, + * but for now, for completion, let's just say that + * for given term t and document (or query) x, + * Tf(t,x) varies with the number of occurrences of term t in x + * (when one increases so does the other) and + * idf(t) similarly varies with the inverse of the + * number of index documents containing term t. + * + *

VSM score of document d for query q is the + * + * Cosine Similarity + * of the weighted query vectors V(q) and V(d): + * + *
 
+ * + * + * + *
+ * + * + *
+ * + * + * + * + * + *
+ * cosine-similarity(q,d)   =   + * + * + * + * + * + *
V(q) · V(d)
–––––––––
|V(q)| |V(d)|
+ *
+ *
+ *
+ *
VSM Score
+ *
+ *
 
+ * + * + * Where V(q) · V(d) is the + * dot product + * of the weighted vectors, + * and |V(q)| and |V(d)| are their + * Euclidean norms. + * + *

Note: the above equation can be viewed as the dot product of + * the normalized weighted vectors, in the sense that dividing + * V(q) by its euclidean norm is normalizing it to a unit vector. + * + *

Lucene refines VSM score for both search quality and usability: + *

    + *
  • Normalizing V(d) to the unit vector is known to be problematic in that + * it removes all document length information. + * For some documents removing this info is probably ok, + * e.g. a document made by duplicating a certain paragraph 10 times, + * especially if that paragraph is made of distinct terms. + * But for a document which contains no duplicated paragraphs, + * this might be wrong. + * To avoid this problem, a different document length normalization + * factor is used, which normalizes to a vector equal to or larger + * than the unit vector: doc-len-norm(d). + *
  • + * + *
  • At indexing, users can specify that certain documents are more + * important than others, by assigning a document boost. + * For this, the score of each document is also multiplied by its boost value + * doc-boost(d). + *
  • + * + *
  • Lucene is field based, hence each query term applies to a single + * field, document length normalization is by the length of the certain field, + * and in addition to document boost there are also document fields boosts. + *
  • + * + *
  • The same field can be added to a document during indexing several times, + * and so the boost of that field is the multiplication of the boosts of + * the separate additions (or parts) of that field within the document. + *
  • + * + *
  • At search time users can specify boosts to each query, sub-query, and + * each query term, hence the contribution of a query term to the score of + * a document is multiplied by the boost of that query term query-boost(q). + *
  • + * + *
  • A document may match a multi term query without containing all + * the terms of that query (this is correct for some of the queries), + * and users can further reward documents matching more query terms + * through a coordination factor, which is usually larger when + * more terms are matched: coord-factor(q,d). + *
  • + *
+ * + *

Under the simplifying assumption of a single field in the index, + * we get Lucene's Conceptual scoring formula: + * + *
 
+ * + * + * + *
+ * + * + *
+ * + * + * + * + * + * + *
+ * score(q,d)   =   + * coord-factor(q,d) ·   + * query-boost(q) ·   + * + * + * + * + * + *
V(q) · V(d)
–––––––––
|V(q)|
+ *
+ *   ·   doc-len-norm(d) + *   ·   doc-boost(d) + *
+ *
+ *
+ *
Lucene Conceptual Scoring Formula
+ *
+ *
 
+ * + *

The conceptual formula is a simplification in the sense that (1) terms and documents + * are fielded and (2) boosts are usually per query term rather than per query. + * + *

We now describe how Lucene implements this conceptual scoring formula, and + * derive from it Lucene's Practical Scoring Function. + * + *

For efficient score computation some scoring components + * are computed and aggregated in advance: + * + *

    + *
  • Query-boost for the query (actually for each query term) + * is known when search starts. + *
  • + * + *
  • Query Euclidean norm |V(q)| can be computed when search starts, + * as it is independent of the document being scored. + * From search optimization perspective, it is a valid question + * why bother to normalize the query at all, because all + * scored documents will be multiplied by the same |V(q)|, + * and hence documents ranks (their order by score) will not + * be affected by this normalization. + * There are two good reasons to keep this normalization: + *
      + *
    • Recall that + * + * Cosine Similarity can be used find how similar + * two documents are. One can use Lucene for e.g. + * clustering, and use a document as a query to compute + * its similarity to other documents. + * In this use case it is important that the score of document d3 + * for query d1 is comparable to the score of document d3 + * for query d2. In other words, scores of a document for two + * distinct queries should be comparable. + * There are other applications that may require this. + * And this is exactly what normalizing the query vector V(q) + * provides: comparability (to a certain extent) of two or more queries. + *
    • + * + *
    • Applying query normalization on the scores helps to keep the + * scores around the unit vector, hence preventing loss of score data + * because of floating point precision limitations. + *
    • + *
    + *
  • + * + *
  • Document length norm doc-len-norm(d) and document + * boost doc-boost(d) are known at indexing time. + * They are computed in advance and their multiplication + * is saved as a single value in the index: norm(d). + * (In the equations below, norm(t in d) means norm(field(t) in doc d) + * where field(t) is the field associated with term t.) + *
  • + *
+ * + *

Lucene's Practical Scoring Function is derived from the above. + * The color codes demonstrate how it relates + * to those of the conceptual formula: + * + *

+ * + * + * + *
+ * + * + *
+ * + * + * + * + * + * + * + * + * + * + * + *
+ * score(q,d)   =   + * coord(q,d)  ·  + * queryNorm(q)  ·  + * + * + * + * ( + * tf(t in d)  ·  + * idf(t)2  ·  + * t.getBoost() ·  + * norm(t,d) + * ) + *
t in q
+ *
+ *
+ *
Lucene Practical Scoring Function
+ *
+ * + *

where + *

    + *
  1. + * + * tf(t in d) + * correlates to the term's frequency, + * defined as the number of times term t appears in the currently scored document d. + * Documents that have more occurrences of a given term receive a higher score. + * Note that tf(t in q) is assumed to be 1 and therefore it does not appear in this equation, + * However if a query contains twice the same term, there will be + * two term-queries with that same term and hence the computation would still be correct (although + * not very efficient). + * The default computation for tf(t in d) in + * {@link org.apache.lucene.search.DefaultSimilarity#tf(float) DefaultSimilarity} is: + * + *
     
    + * + * + * + * + * + *
    + * {@link org.apache.lucene.search.DefaultSimilarity#tf(float) tf(t in d)}   =   + * + * frequency½ + *
    + *
     
    + *
  2. + * + *
  3. + * + * idf(t) stands for Inverse Document Frequency. This value + * correlates to the inverse of docFreq + * (the number of documents in which the term t appears). + * This means rarer terms give higher contribution to the total score. + * idf(t) appears for t in both the query and the document, + * hence it is squared in the equation. + * The default computation for idf(t) in + * {@link org.apache.lucene.search.DefaultSimilarity#idf(int, int) DefaultSimilarity} is: + * + *
     
    + * + * + * + * + * + * + * + *
    + * {@link org.apache.lucene.search.DefaultSimilarity#idf(int, int) idf(t)}  =   + * + * 1 + log ( + * + * + * + * + * + *
    numDocs
    –––––––––
    docFreq+1
    + *
    + * ) + *
    + *
     
    + *
  4. + * + *
  5. + * + * coord(q,d) + * is a score factor based on how many of the query terms are found in the specified document. + * Typically, a document that contains more of the query's terms will receive a higher score + * than another document with fewer query terms. + * This is a search time factor computed in + * {@link SimilarityProvider#coord(int, int) coord(q,d)} + * by the SimilarityProvider in effect at search time. + *
     
    + *
  6. + * + *
  7. + * + * queryNorm(q) + * + * is a normalizing factor used to make scores between queries comparable. + * This factor does not affect document ranking (since all ranked documents are multiplied by the same factor), + * but rather just attempts to make scores from different queries (or even different indexes) comparable. + * This is a search time factor computed by the Similarity in effect at search time. + * + * The default computation in + * {@link org.apache.lucene.search.DefaultSimilarityProvider#queryNorm(float) DefaultSimilarityProvider} + * produces a Euclidean norm: + *
     
    + * + * + * + * + * + *
    + * queryNorm(q)   =   + * {@link org.apache.lucene.search.DefaultSimilarityProvider#queryNorm(float) queryNorm(sumOfSquaredWeights)} + *   =   + * + * + * + * + * + *
    1
    + * –––––––––––––– + *
    sumOfSquaredWeights½
    + *
    + *
     
    + * + * The sum of squared weights (of the query terms) is + * computed by the query {@link org.apache.lucene.search.Weight} object. + * For example, a {@link org.apache.lucene.search.BooleanQuery} + * computes this value as: + * + *
     
    + * + * + * + * + * + * + * + * + * + * + * + *
    + * {@link org.apache.lucene.search.Weight#sumOfSquaredWeights() sumOfSquaredWeights}   =   + * {@link org.apache.lucene.search.Query#getBoost() q.getBoost()} 2 + *  ·  + * + * + * + * ( + * idf(t)  ·  + * t.getBoost() + * ) 2 + *
    t in q
    + *
     
    + * + *
  8. + * + *
  9. + * + * t.getBoost() + * is a search time boost of term t in the query q as + * specified in the query text + * (see query syntax), + * or as set by application calls to + * {@link org.apache.lucene.search.Query#setBoost(float) setBoost()}. + * Notice that there is really no direct API for accessing a boost of one term in a multi term query, + * but rather multi terms are represented in a query as multi + * {@link org.apache.lucene.search.TermQuery TermQuery} objects, + * and so the boost of a term in the query is accessible by calling the sub-query + * {@link org.apache.lucene.search.Query#getBoost() getBoost()}. + *
     
    + *
  10. + * + *
  11. + * + * norm(t,d) encapsulates a few (indexing time) boost and length factors: + * + *
      + *
    • Document boost - set by calling + * {@link org.apache.lucene.document.Document#setBoost(float) doc.setBoost()} + * before adding the document to the index. + *
    • + *
    • Field boost - set by calling + * {@link org.apache.lucene.document.Fieldable#setBoost(float) field.setBoost()} + * before adding the field to a document. + *
    • + *
    • lengthNorm - computed + * when the document is added to the index in accordance with the number of tokens + * of this field in the document, so that shorter fields contribute more to the score. + * LengthNorm is computed by the Similarity class in effect at indexing. + *
    • + *
    + * The {@link #computeNorm} method is responsible for + * combining all of these factors into a single float. + * + *

    + * When a document is added to the index, all the above factors are multiplied. + * If the document has multiple fields with the same name, all their boosts are multiplied together: + * + *
     
    + * + * + * + * + * + * + * + * + * + * + * + *
    + * norm(t,d)   =   + * {@link org.apache.lucene.document.Document#getBoost() doc.getBoost()} + *  ·  + * lengthNorm + *  ·  + * + * + * + * {@link org.apache.lucene.document.Fieldable#getBoost() f.getBoost}() + *
    field f in d named as t
    + *
     
    + * However the resulted norm value is {@link #encodeNormValue(float) encoded} as a single byte + * before being stored. + * At search time, the norm byte value is read from the index + * {@link org.apache.lucene.store.Directory directory} and + * {@link #decodeNormValue(byte) decoded} back to a float norm value. + * This encoding/decoding, while reducing index size, comes with the price of + * precision loss - it is not guaranteed that decode(encode(x)) = x. + * For instance, decode(encode(0.89)) = 0.75. + *
     
    + * Compression of norm values to a single byte saves memory at search time, + * because once a field is referenced at search time, its norms - for + * all documents - are maintained in memory. + *
     
    + * The rationale supporting such lossy compression of norm values is that + * given the difficulty (and inaccuracy) of users to express their true information + * need by a query, only big differences matter. + *
     
    + * Last, note that search time is too late to modify this norm part of scoring, e.g. by + * using a different {@link Similarity} for search. + *
     
    + *

  12. + *
+ * + * @see org.apache.lucene.index.IndexWriterConfig#setSimilarityProvider(SimilarityProvider) + * @see IndexSearcher#setSimilarityProvider(SimilarityProvider) + */ +public abstract class TFIDFSimilarity extends Similarity implements Serializable { + + /** Computes a score factor based on a term or phrase's frequency in a + * document. This value is multiplied by the {@link #idf(int, int)} + * factor for each term in the query and these products are then summed to + * form the initial score for a document. + * + *

Terms and phrases repeated in a document indicate the topic of the + * document, so implementations of this method usually return larger values + * when freq is large, and smaller values when freq + * is small. + * + *

The default implementation calls {@link #tf(float)}. + * + * @param freq the frequency of a term within a document + * @return a score factor based on a term's within-document frequency + */ + public float tf(int freq) { + return tf((float)freq); + } + + /** Computes a score factor based on a term or phrase's frequency in a + * document. This value is multiplied by the {@link #idf(int, int)} + * factor for each term in the query and these products are then summed to + * form the initial score for a document. + * + *

Terms and phrases repeated in a document indicate the topic of the + * document, so implementations of this method usually return larger values + * when freq is large, and smaller values when freq + * is small. + * + * @param freq the frequency of a term within a document + * @return a score factor based on a term's within-document frequency + */ + public abstract float tf(float freq); + + /** + * Computes a score factor for a simple term and returns an explanation + * for that score factor. + * + *

+ * The default implementation uses: + * + *

+   * idf(docFreq, searcher.maxDoc());
+   * 
+ * + * Note that {@link IndexSearcher#maxDoc()} is used instead of + * {@link org.apache.lucene.index.IndexReader#numDocs() IndexReader#numDocs()} because also + * {@link IndexSearcher#docFreq(Term)} is used, and when the latter + * is inaccurate, so is {@link IndexSearcher#maxDoc()}, and in the same direction. + * In addition, {@link IndexSearcher#maxDoc()} is more efficient to compute + * + * @param term the term in question + * @param searcher the document collection being searched + * @param docFreq externally computed docFreq for this term + * @return an IDFExplain object that includes both an idf score factor + and an explanation for the term. + * @throws IOException + */ + public IDFExplanation idfExplain(PerReaderTermState stats, final IndexSearcher searcher) throws IOException { + final int df = stats.docFreq(); + final int max = searcher.maxDoc(); + final float idf = idf(df, max); + return new IDFExplanation() { + @Override + public String explain() { + return "idf(docFreq=" + df + + ", maxDocs=" + max + ")"; + } + @Override + public float getIdf() { + return idf; + }}; + } + + /** + * Computes a score factor for a phrase. + * + *

+ * The default implementation sums the idf factor for + * each term in the phrase. + * + * @param terms the terms in the phrase + * @param searcher the document collection being searched + * @return an IDFExplain object that includes both an idf + * score factor for the phrase and an explanation + * for each term. + * @throws IOException + */ + public IDFExplanation idfExplain(final PerReaderTermState stats[], IndexSearcher searcher) throws IOException { + final int max = searcher.maxDoc(); + float idf = 0.0f; + final StringBuilder exp = new StringBuilder(); + for (final PerReaderTermState stat : stats ) { + final int df = stat.docFreq(); + idf += idf(df, max); + exp.append(" "); + exp.append(df); + } + final float fIdf = idf; + return new IDFExplanation() { + @Override + public float getIdf() { + return fIdf; + } + @Override + public String explain() { + return exp.toString(); + } + }; + } + + /** Computes a score factor based on a term's document frequency (the number + * of documents which contain the term). This value is multiplied by the + * {@link #tf(int)} factor for each term in the query and these products are + * then summed to form the initial score for a document. + * + *

Terms that occur in fewer documents are better indicators of topic, so + * implementations of this method usually return larger values for rare terms, + * and smaller values for common terms. + * + * @param docFreq the number of documents which contain the term + * @param numDocs the total number of documents in the collection + * @return a score factor based on the term's document frequency + */ + public abstract float idf(int docFreq, int numDocs); + + /** Cache of decoded bytes. */ + private static final float[] NORM_TABLE = new float[256]; + + static { + for (int i = 0; i < 256; i++) + NORM_TABLE[i] = SmallFloat.byte315ToFloat((byte)i); + } + + /** Decodes a normalization factor stored in an index. + * @see #encodeNormValue(float) + */ + @Override + public float decodeNormValue(byte b) { + return NORM_TABLE[b & 0xFF]; // & 0xFF maps negative bytes to positive above 127 + } + + /** Encodes a normalization factor for storage in an index. + * + *

The encoding uses a three-bit mantissa, a five-bit exponent, and + * the zero-exponent point at 15, thus + * representing values from around 7x10^9 to 2x10^-9 with about one + * significant decimal digit of accuracy. Zero is also represented. + * Negative numbers are rounded up to zero. Values too large to represent + * are rounded down to the largest representable value. Positive values too + * small to represent are rounded up to the smallest positive representable + * value. + * @see org.apache.lucene.document.Field#setBoost(float) + * @see org.apache.lucene.util.SmallFloat + */ + @Override + public byte encodeNormValue(float f) { + return SmallFloat.floatToByte315(f); + } + + @Override + public final IDFExplanation computeWeight(IndexSearcher searcher, String fieldName, + PerReaderTermState... termStats) throws IOException { + return termStats.length == 1 + ? idfExplain(termStats[0], searcher) + : idfExplain(termStats, searcher); + } + + @Override + public final ExactDocScorer exactDocScorer(Weight weight, String fieldName, AtomicReaderContext context) throws IOException { + final byte norms[] = context.reader.norms(fieldName); + return norms == null + ? new RawExactTFIDFDocScorer(weight.getValue()) + : new ExactTFIDFDocScorer(weight.getValue(), norms); + } + + @Override + public final SloppyDocScorer sloppyDocScorer(Weight weight, String fieldName, AtomicReaderContext context) throws IOException { + final byte norms[] = context.reader.norms(fieldName); + return norms == null + ? new RawSloppyTFIDFDocScorer(weight.getValue()) + : new SloppyTFIDFDocScorer(weight.getValue(), norms); + } + + // nocommit: below are specialized classes, we should test if it really helps to avoid the 'if' for omitNorms, etc + // nocommit: make SCORE_CACHE_SIZE dynamic when available? (e.g. totalTermFreq / docFreq) + // nocommit: make configurable? + private final class ExactTFIDFDocScorer extends ExactDocScorer { + private final float weightValue; + private final byte[] norms; + private static final int SCORE_CACHE_SIZE = 32; + private float[] scoreCache = new float[SCORE_CACHE_SIZE]; + + ExactTFIDFDocScorer(float weightValue, byte norms[]) { + this.weightValue = weightValue; + this.norms = norms; + for (int i = 0; i < SCORE_CACHE_SIZE; i++) + scoreCache[i] = tf(i) * weightValue; + } + + @Override + public float score(int doc, int freq) { + float raw = // compute tf(f)*weight + freq < SCORE_CACHE_SIZE // check cache + ? scoreCache[freq] // cache hit + : tf(freq)*weightValue; // cache miss + + return raw * decodeNormValue(norms[doc]); // normalize for field + } + } + + private final class RawExactTFIDFDocScorer extends ExactDocScorer { + private final float weightValue; + private static final int SCORE_CACHE_SIZE = 32; + private float[] scoreCache = new float[SCORE_CACHE_SIZE]; + + RawExactTFIDFDocScorer(float weightValue) { + this.weightValue = weightValue; + for (int i = 0; i < SCORE_CACHE_SIZE; i++) + scoreCache[i] = tf(i) * weightValue; + } + + @Override + public float score(int doc, int freq) { + return freq < SCORE_CACHE_SIZE // check cache + ? scoreCache[freq] // cache hit + : tf(freq)*weightValue; // cache miss + } + } + + private final class SloppyTFIDFDocScorer extends SloppyDocScorer { + private final float weightValue; + private final byte[] norms; + + SloppyTFIDFDocScorer(float weightValue, byte norms[]) { + this.weightValue = weightValue; + this.norms = norms; + } + + @Override + public float score(int doc, float freq) { + return tf(freq) * weightValue * decodeNormValue(norms[doc]); // compute tf(f)*weight * normalize for field + } + } + + private final class RawSloppyTFIDFDocScorer extends SloppyDocScorer { + private final float weightValue; + + RawSloppyTFIDFDocScorer(float weightValue) { + this.weightValue = weightValue; + } + + @Override + public float score(int doc, float freq) { + return tf(freq)*weightValue; // compute tf(f)*weight + } + } +} Property changes on: lucene\src\java\org\apache\lucene\search\TFIDFSimilarity.java ___________________________________________________________________ Added: svn:eol-style + native Index: lucene/src/java/org/apache/lucene/search/ExactPhraseScorer.java =================================================================== --- lucene/src/java/org/apache/lucene/search/ExactPhraseScorer.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/ExactPhraseScorer.java (working copy) @@ -21,14 +21,9 @@ import java.util.Arrays; import org.apache.lucene.index.*; +import org.apache.lucene.index.IndexReader.AtomicReaderContext; final class ExactPhraseScorer extends Scorer { - private final byte[] norms; - private final float value; - - private static final int SCORE_CACHE_SIZE = 32; - private final float[] scoreCache = new float[SCORE_CACHE_SIZE]; - private final int endMinus1; private final static int CHUNK = 4096; @@ -60,14 +55,12 @@ private int docID = -1; private int freq; - private final Similarity similarity; + private final Similarity.ExactDocScorer docScorer; ExactPhraseScorer(Weight weight, PhraseQuery.PostingsAndFreq[] postings, - Similarity similarity, byte[] norms) throws IOException { + Similarity similarity, String field, AtomicReaderContext context) throws IOException { super(weight); - this.similarity = similarity; - this.norms = norms; - this.value = weight.getValue(); + this.docScorer = similarity.exactDocScorer(weight, field, context); chunkStates = new ChunkState[postings.length]; @@ -88,10 +81,6 @@ return; } } - - for (int i = 0; i < SCORE_CACHE_SIZE; i++) { - scoreCache[i] = similarity.tf((float) i) * value; - } } @Override @@ -206,13 +195,7 @@ @Override public float score() throws IOException { - final float raw; // raw score - if (freq < SCORE_CACHE_SIZE) { - raw = scoreCache[freq]; - } else { - raw = similarity.tf((float) freq) * value; - } - return norms == null ? raw : raw * similarity.decodeNormValue(norms[docID]); // normalize + return docScorer.score(docID, freq); } private int phraseFreq() throws IOException { Index: lucene/src/java/org/apache/lucene/search/TermScorer.java =================================================================== --- lucene/src/java/org/apache/lucene/search/TermScorer.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/TermScorer.java (working copy) @@ -20,25 +20,22 @@ import java.io.IOException; import org.apache.lucene.index.DocsEnum; +import org.apache.lucene.index.IndexReader.AtomicReaderContext; /** Expert: A Scorer for documents matching a Term. */ final class TermScorer extends Scorer { private DocsEnum docsEnum; - private byte[] norms; - private float weightValue; private int doc = -1; private int freq; private int pointer; private int pointerMax; - private static final int SCORE_CACHE_SIZE = 32; - private float[] scoreCache = new float[SCORE_CACHE_SIZE]; private int[] docs; private int[] freqs; private final DocsEnum.BulkReadResult bulkResult; - private final Similarity similarity; + private final Similarity.ExactDocScorer docScorer; /** * Construct a TermScorer. @@ -53,16 +50,11 @@ * @param norms * The field norms of the document fields for the Term. */ - TermScorer(Weight weight, DocsEnum td, Similarity similarity, byte[] norms) { + TermScorer(Weight weight, DocsEnum td, Similarity similarity, String fieldName, AtomicReaderContext context) throws IOException { super(weight); - this.similarity = similarity; + this.docScorer = similarity.exactDocScorer(weight, fieldName, context); this.docsEnum = td; - this.norms = norms; - this.weightValue = weight.getValue(); bulkResult = td.getBulkResult(); - - for (int i = 0; i < SCORE_CACHE_SIZE; i++) - scoreCache[i] = similarity.tf(i) * weightValue; } @Override @@ -134,12 +126,7 @@ @Override public float score() { assert doc != NO_MORE_DOCS; - float raw = // compute tf(f)*weight - freq < SCORE_CACHE_SIZE // check cache - ? scoreCache[freq] // cache hit - : similarity.tf(freq)*weightValue; // cache miss - - return norms == null ? raw : raw * similarity.decodeNormValue(norms[doc]); // normalize for field + return docScorer.score(doc, freq); } /** Index: lucene/src/java/org/apache/lucene/search/DefaultSimilarity.java =================================================================== --- lucene/src/java/org/apache/lucene/search/DefaultSimilarity.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/search/DefaultSimilarity.java (working copy) @@ -20,7 +20,7 @@ */ /** Expert: Default scoring implementation. */ -public class DefaultSimilarity extends Similarity { +public class DefaultSimilarity extends TFIDFSimilarity { /** Implemented as * state.getBoost()*lengthNorm(numTerms), where @@ -39,7 +39,7 @@ numTerms = state.getLength(); return state.getBoost() * ((float) (1.0 / Math.sqrt(numTerms))); } - + /** Implemented as sqrt(freq). */ @Override public float tf(float freq) { Index: lucene/src/java/org/apache/lucene/util/PerReaderTermState.java =================================================================== --- lucene/src/java/org/apache/lucene/util/PerReaderTermState.java (revision 1086097) +++ lucene/src/java/org/apache/lucene/util/PerReaderTermState.java (working copy) @@ -43,6 +43,7 @@ public final ReaderContext topReaderContext; // for asserting! private final TermState[] states; private int docFreq; + private long totalTermFreq; /** * Creates an empty {@link PerReaderTermState} from a {@link ReaderContext} @@ -64,9 +65,9 @@ * Creates a {@link PerReaderTermState} with an initial {@link TermState}, * {@link IndexReader} pair. */ - public PerReaderTermState(ReaderContext context, TermState state, int ord, int docFreq) { + public PerReaderTermState(ReaderContext context, TermState state, int ord, int docFreq, long totalTermFreq) { this(context); - register(state, ord, docFreq); + register(state, ord, docFreq, totalTermFreq); } /** @@ -92,7 +93,7 @@ final TermsEnum termsEnum = terms.getThreadTermsEnum(); // thread-private don't share! if (SeekStatus.FOUND == termsEnum.seek(bytes, cache)) { final TermState termState = termsEnum.termState(); - perReaderTermState.register(termState, leaves[i].ord, termsEnum.docFreq()); + perReaderTermState.register(termState, leaves[i].ord, termsEnum.docFreq(), termsEnum.totalTermFreq()); } } } @@ -113,12 +114,16 @@ * Registers and associates a {@link TermState} with an leaf ordinal. The leaf ordinal * should be derived from a {@link ReaderContext}'s leaf ord. */ - public void register(TermState state, final int ord, final int docFreq) { + public void register(TermState state, final int ord, final int docFreq, final long totalTermFreq) { assert state != null : "state must not be null"; assert ord >= 0 && ord < states.length; assert states[ord] == null : "state for ord: " + ord + " already registered"; this.docFreq += docFreq; + if (this.totalTermFreq >= 0 && totalTermFreq >= 0) + this.totalTermFreq += totalTermFreq; + else + this.totalTermFreq = -1; states[ord] = state; } @@ -138,11 +143,27 @@ /** * Returns the accumulated document frequency of all {@link TermState} - * instances passed to {@link #register(TermState, int, int)}. + * instances passed to {@link #register(TermState, int, int, long)}. * @return the accumulated document frequency of all {@link TermState} - * instances passed to {@link #register(TermState, int, int)}. + * instances passed to {@link #register(TermState, int, int, long)}. */ public int docFreq() { return docFreq; } + + /** + * Returns the accumulated term frequency of all {@link TermState} + * instances passed to {@link #register(TermState, int, int, long)}. + * @return the accumulated term frequency of all {@link TermState} + * instances passed to {@link #register(TermState, int, int, long)}. + */ + public long totalTermFreq() { + return totalTermFreq; + } + + /** expert: only available for queries that want to lie about docfreq + * @lucene.internal */ + public void setDocFreq(int docFreq) { + this.docFreq = docFreq; + } } \ No newline at end of file Index: lucene/contrib/misc/src/test/org/apache/lucene/misc/SweetSpotSimilarityTest.java =================================================================== --- lucene/contrib/misc/src/test/org/apache/lucene/misc/SweetSpotSimilarityTest.java (revision 1086097) +++ lucene/contrib/misc/src/test/org/apache/lucene/misc/SweetSpotSimilarityTest.java (working copy) @@ -21,6 +21,7 @@ import org.apache.lucene.search.DefaultSimilarity; import org.apache.lucene.search.DefaultSimilarityProvider; import org.apache.lucene.search.Similarity; +import org.apache.lucene.search.TFIDFSimilarity; import org.apache.lucene.search.SimilarityProvider; import org.apache.lucene.util.LuceneTestCase; import org.apache.lucene.index.FieldInvertState; @@ -170,8 +171,8 @@ SweetSpotSimilarity ss = new SweetSpotSimilarity(); - Similarity d = new DefaultSimilarity(); - Similarity s = ss; + TFIDFSimilarity d = new DefaultSimilarity(); + TFIDFSimilarity s = ss; // tf equal @@ -222,7 +223,7 @@ }; ss.setHyperbolicTfFactors(3.3f, 7.7f, Math.E, 5.0f); - Similarity s = ss; + TFIDFSimilarity s = ss; for (int i = 1; i <=1000; i++) { assertTrue("MIN tf: i="+i+" : s="+s.tf(i), Index: lucene/contrib/queries/src/java/org/apache/lucene/search/similar/MoreLikeThis.java =================================================================== --- lucene/contrib/queries/src/java/org/apache/lucene/search/similar/MoreLikeThis.java (revision 1086097) +++ lucene/contrib/queries/src/java/org/apache/lucene/search/similar/MoreLikeThis.java (working copy) @@ -44,6 +44,7 @@ import org.apache.lucene.search.Query; import org.apache.lucene.search.ScoreDoc; import org.apache.lucene.search.Similarity; +import org.apache.lucene.search.TFIDFSimilarity; import org.apache.lucene.search.TermQuery; import org.apache.lucene.search.TopDocs; import org.apache.lucene.store.FSDirectory; @@ -284,7 +285,8 @@ /** * For idf() calculations. */ - private Similarity similarity;// = new DefaultSimilarity(); + // nocommit? this is pretty much wired to tf-idf things... + private TFIDFSimilarity similarity;// = new DefaultSimilarity(); /** * IndexReader to use @@ -319,17 +321,17 @@ this(ir, new DefaultSimilarity()); } - public MoreLikeThis(IndexReader ir, Similarity sim){ + public MoreLikeThis(IndexReader ir, TFIDFSimilarity sim){ this.ir = ir; this.similarity = sim; } - public Similarity getSimilarity() { + public TFIDFSimilarity getSimilarity() { return similarity; } - public void setSimilarity(Similarity similarity) { + public void setSimilarity(TFIDFSimilarity similarity) { this.similarity = similarity; } Index: lucene/contrib/queries/src/java/org/apache/lucene/search/FuzzyLikeThisQuery.java =================================================================== --- lucene/contrib/queries/src/java/org/apache/lucene/search/FuzzyLikeThisQuery.java (revision 1086097) +++ lucene/contrib/queries/src/java/org/apache/lucene/search/FuzzyLikeThisQuery.java (working copy) @@ -51,7 +51,8 @@ */ public class FuzzyLikeThisQuery extends Query { - static Similarity sim=new DefaultSimilarity(); + //nocommit? this query is pretty much hardcoded at TF/IDF + static TFIDFSimilarity sim=new DefaultSimilarity(); Query rewrittenQuery=null; ArrayList fieldVals=new ArrayList(); Analyzer analyzer;