Description
This is related to SPARK-42250. For scalar inputs, the predict_batch_udf will fail if the batch size is 1:
import numpy as np from pyspark.ml.functions import predict_batch_udf from pyspark.sql.types import DoubleType df = spark.createDataFrame([[1.0],[2.0]], schema=["a"]) def make_predict_fn(): def predict(inputs): return inputs return predict identity = predict_batch_udf(make_predict_fn, return_type=DoubleType(), batch_size=1) preds = df.withColumn("preds", identity("a")).collect()
fails with:
File "/.../spark/python/pyspark/worker.py", line 869, in main process() File "/.../spark/python/pyspark/worker.py", line 861, in process serializer.dump_stream(out_iter, outfile) File "/.../spark/python/pyspark/sql/pandas/serializers.py", line 354, in dump_stream return ArrowStreamSerializer.dump_stream(self, init_stream_yield_batches(), stream) File "/.../spark/python/pyspark/sql/pandas/serializers.py", line 86, in dump_stream for batch in iterator: File "/.../spark/python/pyspark/sql/pandas/serializers.py", line 347, in init_stream_yield_batches for series in iterator: File "/.../spark/python/pyspark/worker.py", line 555, in func for result_batch, result_type in result_iter: File "/.../spark/python/pyspark/ml/functions.py", line 818, in predict yield _validate_and_transform_prediction_result( File "/.../spark/python/pyspark/ml/functions.py", line 339, in _validate_and_transform_prediction_result if len(preds_array) != num_input_rows: TypeError: len() of unsized object