Details
-
Bug
-
Status: Resolved
-
Critical
-
Resolution: Fixed
-
1.2.0, 1.2.1, 1.3.0, 1.4.1, 1.5.1, 1.6.1, 2.0.0
-
None
Description
We have seen non-deterministic FAILED_TO_UNCOMPRESS(5) errors during shuffle read. Here's a sample stacktrace from an executor:
14/10/23 18:34:11 ERROR Executor: Exception in task 1747.3 in stage 11.0 (TID 33053) java.io.IOException: FAILED_TO_UNCOMPRESS(5) at org.xerial.snappy.SnappyNative.throw_error(SnappyNative.java:78) at org.xerial.snappy.SnappyNative.rawUncompress(Native Method) at org.xerial.snappy.Snappy.rawUncompress(Snappy.java:391) at org.xerial.snappy.Snappy.uncompress(Snappy.java:427) at org.xerial.snappy.SnappyInputStream.readFully(SnappyInputStream.java:127) at org.xerial.snappy.SnappyInputStream.readHeader(SnappyInputStream.java:88) at org.xerial.snappy.SnappyInputStream.<init>(SnappyInputStream.java:58) at org.apache.spark.io.SnappyCompressionCodec.compressedInputStream(CompressionCodec.scala:128) at org.apache.spark.storage.BlockManager.wrapForCompression(BlockManager.scala:1090) at org.apache.spark.storage.ShuffleBlockFetcherIterator$$anon$1$$anonfun$onBlockFetchSuccess$1.apply(ShuffleBlockFetcherIterator.scala:116) at org.apache.spark.storage.ShuffleBlockFetcherIterator$$anon$1$$anonfun$onBlockFetchSuccess$1.apply(ShuffleBlockFetcherIterator.scala:115) at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:243) at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:52) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:30) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at org.apache.spark.util.collection.ExternalAppendOnlyMap.insertAll(ExternalAppendOnlyMap.scala:129) at org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$5.apply(CoGroupedRDD.scala:159) at org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$5.apply(CoGroupedRDD.scala:158) at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771) at org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:158) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) at org.apache.spark.rdd.RDD.iterator(RDD.scala:229) at org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) at org.apache.spark.rdd.RDD.iterator(RDD.scala:229) at org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) at org.apache.spark.rdd.RDD.iterator(RDD.scala:229) at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) at org.apache.spark.rdd.RDD.iterator(RDD.scala:229) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:56) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:181) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745)
Here's another occurrence of a similar error:
java.io.IOException: failed to read chunk org.xerial.snappy.SnappyInputStream.hasNextChunk(SnappyInputStream.java:348) org.xerial.snappy.SnappyInputStream.rawRead(SnappyInputStream.java:159) org.xerial.snappy.SnappyInputStream.read(SnappyInputStream.java:142) java.io.ObjectInputStream$PeekInputStream.read(ObjectInputStream.java:2310) java.io.ObjectInputStream$BlockDataInputStream.read(ObjectInputStream.java:2712) java.io.ObjectInputStream$BlockDataInputStream.readFully(ObjectInputStream.java:2742) java.io.ObjectInputStream.readArray(ObjectInputStream.java:1687) java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1344) java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990) java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915) java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:62) org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:133) org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:71) scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:30) org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) org.apache.spark.util.collection.ExternalAppendOnlyMap.insertAll(ExternalAppendOnlyMap.scala:129) org.apache.spark.Aggregator.combineValuesByKey(Aggregator.scala:58) org.apache.spark.shuffle.hash.HashShuffleReader.read(HashShuffleReader.scala:46) org.apache.spark.rdd.ShuffledRDD.compute(ShuffledRDD.scala:92) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61) org.apache.spark.scheduler.Task.run(Task.scala:56) org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:182) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) java.lang.Thread.run(Thread.java:745)
The first stacktrace was reported by a Spark user. The second stacktrace occurred when running
import java.util.Random val numKeyValPairs=1000 val numberOfMappers=200 val keySize=10000 for (i <- 0 to 19) { val pairs1 = sc.parallelize(0 to numberOfMappers, numberOfMappers).flatMap(p=>{ val randGen = new Random val arr1 = new Array[(Int, Array[Byte])](numKeyValPairs) for (i <- 0 until numKeyValPairs){ val byteArr = new Array[Byte](keySize) randGen.nextBytes(byteArr) arr1(i) = (randGen.nextInt(Int.MaxValue),byteArr) } arr1 }) pairs1.groupByKey(numberOfMappers).count }
This job frequently runs without any problems, but when it fails it seem that every post-shuffle task fails with either PARSING_ERROR(2), FAILED_TO_UNCOMPRESS(5), or some other decompression error. I've seen reports of similar problems when using LZF compression, so I think that this is caused by some sort of general stream corruption issue.
This issue has been observed even when no spilling occurs, so I don't believe that this is due to a bug in spilling code.
I was unable to reproduce this when running this code in a fresh Spark EC2 cluster and we've been having a hard time finding a deterministic reproduction.
Attachments
Attachments
Issue Links
- is duplicated by
-
SPARK-12418 spark shuffle FAILED_TO_UNCOMPRESS
- Resolved
- relates to
-
SPARK-4107 Incorrect handling of Channel.read()'s return value may lead to data truncation
- Resolved
-
SPARK-7660 Snappy-java buffer-sharing bug leads to data corruption / test failures
- Resolved
-
SPARK-27562 Complete the verification mechanism for shuffle transmitted data
- In Progress
-
SPARK-26089 Handle large corrupt shuffle blocks
- Resolved
-
SPARK-3630 Identify cause of Kryo+Snappy PARSING_ERROR
- Resolved
- links to