Details
Description
My team has a bash script + python script that uses pyspark to extract data from a hive database. The scripts work when run on a server. However, we need to containerize this since we will not have access to that server in the future.
Thus, I am trying to get the job to work from a container.
When trying to run the scripts locally or in a docker container, I am running into driver issues. Unfortunately, nobody on my team helped set up the environment on the server, where everything is working. Thus, we are having a hard time figuring out what is wrong with our local/containerized environments and cannot replicate a successful script run.
From a container, I run a bash script that does the following:
```{bash}
$SPARK_HOME/bin/spark-submit etl_job.py
```
The contents of `etl_job.py` are as follows:
```{python}
print('\n\nStarting python job\n\n')
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
from credentials import PRESTO_USER, PRESTO_PASSWORD, PRESTO_URL, PRESTO_SSL, SSL_PASSWORD, TEST_SCHEMA, TEST_TABLE
import pandas as pd
print('\n\nStarting spark session \n\n')
sc = SparkContext.getOrCreate()
spark = SparkSession(sc)
print('\n\nConnecting to Presto\n\n')
Prestoprod = (
spark.read.format("jdbc")
.option("url", PRESTO_URL)
.option("user", PRESTO_USER)
.option("password", PRESTO_PASSWORD)
.option("driver", "com.facebook.presto.jdbc.PrestoDriver")
.option("SSL", "true")
.option("SSLKeyStorePath", PRESTO_SSL)
.option("SSLKeyStorePassword", SSL_PASSWORD)
)
print('\n\nTrying to query Presto.\n\n')
query = "select * from hive.{}.{}".format(TEST_SCHEMA, TEST_TABLE)
results = (
Prestoprod.option(
"query",
query
)
.load()
)
```
However, when I run the job, I get the following error:
```
py4j.protocol.Py4JJavaError: An error occurred while calling o33.load.
: java.lang.ClassNotFoundException: com.facebook.presto.jdbc.PrestoDriver
```
Here is the full log:
```
Starting python job
Starting spark session
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
22/07/19 04:45:04 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Connecting to Presto
Trying to query Presto.
Traceback (most recent call last):
File "/home/jovyan/etl_job.py", line 30, in <module>
.load()
File "/usr/local/spark/python/pyspark/sql/readwriter.py", line 184, in load
return self._df(self._jreader.load())
File "/usr/local/spark/python/lib/py4j-0.10.9.5-src.zip/py4j/java_gateway.py", line 1321, in {}call{}
File "/usr/local/spark/python/pyspark/sql/utils.py", line 190, in deco
return f(*a, **kw)
File "/usr/local/spark/python/lib/py4j-0.10.9.5-src.zip/py4j/protocol.py", line 326, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o33.load.
: java.lang.ClassNotFoundException: com.facebook.presto.jdbc.PrestoDriver
at java.base/java.net.URLClassLoader.findClass(URLClassLoader.java:445)
at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:587)
at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:520)
at org.apache.spark.sql.execution.datasources.jdbc.DriverRegistry$.register(DriverRegistry.scala:46)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.$anonfun$driverClass$1(JDBCOptions.scala:101)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.$anonfun$driverClass$1$adapted(JDBCOptions.scala:101)
at scala.Option.foreach(Option.scala:437)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:101)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:39)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:34)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:350)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:228)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$2(DataFrameReader.scala:210)
at scala.Option.getOrElse(Option.scala:201)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:210)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:171)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:568)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.base/java.lang.Thread.run(Thread.java:833)
```
Other relevant info is that I am trying to run this on a container built from the jupyter/all-spark-notebook image fron dockerhub.