Description
Prepare table:
CREATE TABLE store_sales ( ss_sold_date_sk INT, ss_sold_time_sk INT, ss_item_sk INT, ss_customer_sk INT, ss_cdemo_sk INT, ss_hdemo_sk INT, ss_addr_sk INT, ss_store_sk INT, ss_promo_sk INT, ss_ticket_number INT, ss_quantity INT, ss_wholesale_cost DECIMAL(7,2), ss_list_price DECIMAL(7,2), ss_sales_price DECIMAL(7,2), ss_ext_discount_amt DECIMAL(7,2), ss_ext_sales_price DECIMAL(7,2), ss_ext_wholesale_cost DECIMAL(7,2), ss_ext_list_price DECIMAL(7,2), ss_ext_tax DECIMAL(7,2), ss_coupon_amt DECIMAL(7,2), ss_net_paid DECIMAL(7,2), ss_net_paid_inc_tax DECIMAL(7,2),ss_net_profit DECIMAL(7,2)); CREATE TABLE reason ( r_reason_sk INT, r_reason_id varchar(255), r_reason_desc varchar(255));
SQL:
WITH bucket_result AS ( SELECT CASE WHEN (count (CASE WHEN ss_quantity BETWEEN 1 AND 20 THEN ss_quantity END)) > 62316685 THEN (avg(CASE WHEN ss_quantity BETWEEN 1 AND 20 THEN ss_ext_discount_amt END)) ELSE (avg(CASE WHEN ss_quantity BETWEEN 1 AND 20 THEN ss_net_paid END)) END bucket1, CASE WHEN (count (CASE WHEN ss_quantity BETWEEN 21 AND 40 THEN ss_quantity END)) > 19045798 THEN (avg(CASE WHEN ss_quantity BETWEEN 21 AND 40 THEN ss_ext_discount_amt END)) ELSE (avg(CASE WHEN ss_quantity BETWEEN 21 AND 40 THEN ss_net_paid END)) END bucket2, CASE WHEN (count (CASE WHEN ss_quantity BETWEEN 41 AND 60 THEN ss_quantity END)) > 365541424 THEN (avg(CASE WHEN ss_quantity BETWEEN 41 AND 60 THEN ss_ext_discount_amt END)) ELSE (avg(CASE WHEN ss_quantity BETWEEN 41 AND 60 THEN ss_net_paid END)) END bucket3, CASE WHEN (count (CASE WHEN ss_quantity BETWEEN 61 AND 80 THEN ss_quantity END)) > 19045798 THEN (avg(CASE WHEN ss_quantity BETWEEN 61 AND 80 THEN ss_ext_discount_amt END)) ELSE (avg(CASE WHEN ss_quantity BETWEEN 61 AND 80 THEN ss_net_paid END)) END bucket4, CASE WHEN (count (CASE WHEN ss_quantity BETWEEN 81 AND 100 THEN ss_quantity END)) > 365541424 THEN (avg(CASE WHEN ss_quantity BETWEEN 81 AND 100 THEN ss_ext_discount_amt END)) ELSE (avg(CASE WHEN ss_quantity BETWEEN 81 AND 100 THEN ss_net_paid END)) END bucket5 FROM store_sales ) SELECT (SELECT bucket1 FROM bucket_result) as bucket1, (SELECT bucket2 FROM bucket_result) as bucket2, (SELECT bucket3 FROM bucket_result) as bucket3, (SELECT bucket4 FROM bucket_result) as bucket4, (SELECT bucket5 FROM bucket_result) as bucket5 FROM reason WHERE r_reason_sk = 1;
Plan of Spark SQL:
== Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- Project [Subquery subquery#0, [id=#23] AS bucket1#1, Subquery subquery#2, [id=#34] AS bucket2#3, Subquery subquery#4, [id=#45] AS bucket3#5, Subquery subquery#6, [id=#56] AS bucket4#7, Subquery subquery#8, [id=#67] AS bucket5#9] : :- Subquery subquery#0, [id=#23] : : +- AdaptiveSparkPlan isFinalPlan=false : : +- HashAggregate(keys=[], functions=[count(if (((ss_quantity#28 >= 1) AND (ss_quantity#28 <= 20))) ss_quantity#28 else null), avg(UnscaledValue(if (((ss_quantity#28 >= 1) AND (ss_quantity#28 <= 20))) ss_ext_discount_amt#32 else null)), avg(UnscaledValue(if (((ss_quantity#28 >= 1) AND (ss_quantity#28 <= 20))) ss_net_paid#38 else null))]) : : +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#21] : : +- HashAggregate(keys=[], functions=[partial_count(if (((ss_quantity#28 >= 1) AND (ss_quantity#28 <= 20))) ss_quantity#28 else null), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 1) AND (ss_quantity#28 <= 20))) ss_ext_discount_amt#32 else null)), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 1) AND (ss_quantity#28 <= 20))) ss_net_paid#38 else null))]) : : +- FileScan parquet default.store_sales[ss_quantity#28,ss_ext_discount_amt#32,ss_net_paid#38] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/SPARK-28169/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<ss_quantity:int,ss_ext_discount_amt:decimal(7,2),ss_net_paid:decimal(7,2)> : :- Subquery subquery#2, [id=#34] : : +- AdaptiveSparkPlan isFinalPlan=false : : +- HashAggregate(keys=[], functions=[count(if (((ss_quantity#28 >= 21) AND (ss_quantity#28 <= 40))) ss_quantity#28 else null), avg(UnscaledValue(if (((ss_quantity#28 >= 21) AND (ss_quantity#28 <= 40))) ss_ext_discount_amt#32 else null)), avg(UnscaledValue(if (((ss_quantity#28 >= 21) AND (ss_quantity#28 <= 40))) ss_net_paid#38 else null))]) : : +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#32] : : +- HashAggregate(keys=[], functions=[partial_count(if (((ss_quantity#28 >= 21) AND (ss_quantity#28 <= 40))) ss_quantity#28 else null), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 21) AND (ss_quantity#28 <= 40))) ss_ext_discount_amt#32 else null)), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 21) AND (ss_quantity#28 <= 40))) ss_net_paid#38 else null))]) : : +- FileScan parquet default.store_sales[ss_quantity#28,ss_ext_discount_amt#32,ss_net_paid#38] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/SPARK-28169/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<ss_quantity:int,ss_ext_discount_amt:decimal(7,2),ss_net_paid:decimal(7,2)> : :- Subquery subquery#4, [id=#45] : : +- AdaptiveSparkPlan isFinalPlan=false : : +- HashAggregate(keys=[], functions=[count(if (((ss_quantity#28 >= 41) AND (ss_quantity#28 <= 60))) ss_quantity#28 else null), avg(UnscaledValue(if (((ss_quantity#28 >= 41) AND (ss_quantity#28 <= 60))) ss_ext_discount_amt#32 else null)), avg(UnscaledValue(if (((ss_quantity#28 >= 41) AND (ss_quantity#28 <= 60))) ss_net_paid#38 else null))]) : : +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#43] : : +- HashAggregate(keys=[], functions=[partial_count(if (((ss_quantity#28 >= 41) AND (ss_quantity#28 <= 60))) ss_quantity#28 else null), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 41) AND (ss_quantity#28 <= 60))) ss_ext_discount_amt#32 else null)), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 41) AND (ss_quantity#28 <= 60))) ss_net_paid#38 else null))]) : : +- FileScan parquet default.store_sales[ss_quantity#28,ss_ext_discount_amt#32,ss_net_paid#38] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/SPARK-28169/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<ss_quantity:int,ss_ext_discount_amt:decimal(7,2),ss_net_paid:decimal(7,2)> : :- Subquery subquery#6, [id=#56] : : +- AdaptiveSparkPlan isFinalPlan=false : : +- HashAggregate(keys=[], functions=[count(if (((ss_quantity#28 >= 61) AND (ss_quantity#28 <= 80))) ss_quantity#28 else null), avg(UnscaledValue(if (((ss_quantity#28 >= 61) AND (ss_quantity#28 <= 80))) ss_ext_discount_amt#32 else null)), avg(UnscaledValue(if (((ss_quantity#28 >= 61) AND (ss_quantity#28 <= 80))) ss_net_paid#38 else null))]) : : +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#54] : : +- HashAggregate(keys=[], functions=[partial_count(if (((ss_quantity#28 >= 61) AND (ss_quantity#28 <= 80))) ss_quantity#28 else null), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 61) AND (ss_quantity#28 <= 80))) ss_ext_discount_amt#32 else null)), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 61) AND (ss_quantity#28 <= 80))) ss_net_paid#38 else null))]) : : +- FileScan parquet default.store_sales[ss_quantity#28,ss_ext_discount_amt#32,ss_net_paid#38] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/SPARK-28169/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<ss_quantity:int,ss_ext_discount_amt:decimal(7,2),ss_net_paid:decimal(7,2)> : +- Subquery subquery#8, [id=#67] : +- AdaptiveSparkPlan isFinalPlan=false : +- HashAggregate(keys=[], functions=[count(if (((ss_quantity#28 >= 81) AND (ss_quantity#28 <= 100))) ss_quantity#28 else null), avg(UnscaledValue(if (((ss_quantity#28 >= 81) AND (ss_quantity#28 <= 100))) ss_ext_discount_amt#32 else null)), avg(UnscaledValue(if (((ss_quantity#28 >= 81) AND (ss_quantity#28 <= 100))) ss_net_paid#38 else null))]) : +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#65] : +- HashAggregate(keys=[], functions=[partial_count(if (((ss_quantity#28 >= 81) AND (ss_quantity#28 <= 100))) ss_quantity#28 else null), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 81) AND (ss_quantity#28 <= 100))) ss_ext_discount_amt#32 else null)), partial_avg(UnscaledValue(if (((ss_quantity#28 >= 81) AND (ss_quantity#28 <= 100))) ss_net_paid#38 else null))]) : +- FileScan parquet default.store_sales[ss_quantity#28,ss_ext_discount_amt#32,ss_net_paid#38] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/SPARK-28169/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<ss_quantity:int,ss_ext_discount_amt:decimal(7,2),ss_net_paid:decimal(7,2)> +- Filter (isnotnull(r_reason_sk#15) AND (r_reason_sk#15 = 1)) +- FileScan parquet default.reason[r_reason_sk#15] Batched: true, DataFilters: [isnotnull(r_reason_sk#15), (r_reason_sk#15 = 1)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/SPARK-28169/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [IsNotNull(r_reason_sk), EqualTo(r_reason_sk,1)], ReadSchema: struct<r_reason_sk:int>
Plan of PostgreSQL:
QUERY PLAN -------------------------------------------------------------------------------------- Seq Scan on reason (cost=51.80..62.67 rows=1 width=160) Filter: (r_reason_sk = 1) CTE bucket_result -> Aggregate (cost=51.68..51.70 rows=1 width=160) -> Seq Scan on store_sales (cost=0.00..13.40 rows=340 width=32) InitPlan 2 (returns $1) -> CTE Scan on bucket_result (cost=0.00..0.02 rows=1 width=32) InitPlan 3 (returns $2) -> CTE Scan on bucket_result bucket_result_1 (cost=0.00..0.02 rows=1 width=32) InitPlan 4 (returns $3) -> CTE Scan on bucket_result bucket_result_2 (cost=0.00..0.02 rows=1 width=32) InitPlan 5 (returns $4) -> CTE Scan on bucket_result bucket_result_3 (cost=0.00..0.02 rows=1 width=32) InitPlan 6 (returns $5) -> CTE Scan on bucket_result bucket_result_4 (cost=0.00..0.02 rows=1 width=32) (15 rows)
It seems Spark SQL scan store_sales five times, but PostgreSQL scan store_sales only once.