Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-32604

Bug in ALSModel Python Documentation

Rank to TopRank to BottomAttach filesAttach ScreenshotBulk Copy AttachmentsBulk Move AttachmentsVotersWatch issueWatchersCreate sub-taskConvert to sub-taskLinkCloneLabelsUpdate Comment AuthorReplace String in CommentUpdate Comment VisibilityDelete Comments
    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Minor
    • Resolution: Duplicate
    • 2.4.0, 3.0.0
    • None
    • Documentation, PySpark
    • None

    Description

      In the ALSModel documentation (https://spark.apache.org/docs/latest/ml-collaborative-filtering.html), there is a bug which causes data frame creation to fail with the following error:

      Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
      : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 15, 10.0.0.133, executor 10): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
        File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 372, in main
          process()
        File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 367, in process
          serializer.dump_stream(func(split_index, iterator), outfile)
        File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/serializers.py", line 390, in dump_stream
          vs = list(itertools.islice(iterator, batch))
        File "/usr/lib/spark/python/pyspark/rdd.py", line 1354, in takeUpToNumLeft
          yield next(iterator)
        File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/util.py", line 99, in wrapper
          return f(*args, **kwargs)
        File "<ipython-input-5-86574b26abad>", line 24, in <lambda>
      NameError: name 'long' is not defined
      
      	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:456)
      	at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:592)
      	at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:575)
      	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:410)
      	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
      	at scala.collection.Iterator$class.foreach(Iterator.scala:891)
      	at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
      	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
      	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
      	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
      	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
      	at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
      	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
      	at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
      	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
      	at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
      	at org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:153)
      	at org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:153)
      	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2121)
      	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2121)
      	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
      	at org.apache.spark.scheduler.Task.run(Task.scala:121)
      	at org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407)
      	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408)
      	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413)
      	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
      	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
      	at java.lang.Thread.run(Thread.java:745)
      
      Driver stacktrace:
      	at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1890)
      	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878)
      	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
      	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
      	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
      	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1877)
      	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:929)
      	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:929)
      	at scala.Option.foreach(Option.scala:257)
      	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:929)
      	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2111)
      	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2060)
      	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2049)
      	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
      	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:740)
      	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2081)
      	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2102)
      	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2121)
      	at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:153)
      	at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
      	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
      	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
      	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
      	at java.lang.reflect.Method.invoke(Method.java:498)
      	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
      	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
      	at py4j.Gateway.invoke(Gateway.java:282)
      	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
      	at py4j.commands.CallCommand.execute(CallCommand.java:79)
      	at py4j.GatewayConnection.run(GatewayConnection.java:238)
      	at java.lang.Thread.run(Thread.java:745)
      Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
        File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 372, in main
          process()
        File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 367, in process
          serializer.dump_stream(func(split_index, iterator), outfile)
        File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/serializers.py", line 390, in dump_stream
          vs = list(itertools.islice(iterator, batch))
        File "/usr/lib/spark/python/pyspark/rdd.py", line 1354, in takeUpToNumLeft
          yield next(iterator)
        File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/util.py", line 99, in wrapper
          return f(*args, **kwargs)
        File "<ipython-input-5-86574b26abad>", line 24, in <lambda>
      NameError: name 'long' is not defined
      
      	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:456)
      	at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:592)
      	at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:575)
      	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:410)
      	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
      	at scala.collection.Iterator$class.foreach(Iterator.scala:891)
      	at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
      	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
      	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
      	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
      	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
      	at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
      	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
      	at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
      	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
      	at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
      	at org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:153)
      	at org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:153)
      	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2121)
      	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2121)
      	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
      	at org.apache.spark.scheduler.Task.run(Task.scala:121)
      	at org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407)
      	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408)
      	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413)
      	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
      	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
      	... 1 more
      

      To replicate the error try to train an ALSModel with the documentation code.

       

      To fix, change "long" to "int" in the following line:

      ratingsRDD = parts.map(lambda p: Row(userId=int(p[0]), movieId=int(p[1]),
       rating=float(p[2]), timestamp=long(p[3])))

       

      The referenced example code already has this change, but it has not been updated in the documentation:

      https://github.com/apache/spark/blob/master/examples/src/main/python/ml/als_example.py

       

      Attachments

        Issue Links

        Activity

          This comment will be Viewable by All Users Viewable by All Users
          Cancel

          People

            Unassigned Unassigned
            zachc16 Zach Cahoone
            Votes:
            0 Vote for this issue
            Watchers:
            1 Start watching this issue

            Dates

              Created:
              Updated:
              Resolved:

              Slack

                Issue deployment