Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-32151

Kafka does not allow Partition Rebalance Handling

    XMLWordPrintableJSON

    Details

    • Type: Improvement
    • Status: Open
    • Priority: Minor
    • Resolution: Unresolved
    • Affects Version/s: 2.4.5
    • Fix Version/s: None
    • Component/s: DStreams
    • Labels:
      None

      Description

      When a consumer group rebalance occurs when the Spark driver is using the Subscribe or Subscribe Pattern ConsumerStrategy, driver's offsets are cleared when partitions are revoked and then reassigned.

      While this doesn't happen in the normal rebalance scenario of more consumers joining the group (though it could), it does happen when the partition leader is reelected because of a Kafka node being stopped or decommissioned.

      This seems to only occur when users specify their own offsets and do not use Kafka as the persistent store of offsets (they use their own database, and possibly if using checkpointing).

      This could probably affect Structured Streaming.

      This presents itself as an "NoOffsetForPartitionException":

      20/05/13 01:37:00 ERROR JobScheduler: Error generating jobs for time 1589333820000 ms
      org.apache.kafka.clients.consumer.NoOffsetForPartitionException: Undefined offset with no reset policy for partitions: [production-ad-metrics-1, production-ad-metrics-2, production-ad-metrics-0, production-ad-metrics-5, production-ad-metrics-6, production-ad-metrics-3, production-ad-metrics-4, production-ad-metrics-7]
        at org.apache.kafka.clients.consumer.internals.SubscriptionState.resetMissingPositions(SubscriptionState.java:391)
        at org.apache.kafka.clients.consumer.KafkaConsumer.updateFetchPositions(KafkaConsumer.java:2185)
        at org.apache.kafka.clients.consumer.KafkaConsumer.updateAssignmentMetadataIfNeeded(KafkaConsumer.java:1222)
        at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:1181)
        at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:1115)
        at org.apache.spark.streaming.kafka010.DirectKafkaInputDStream.paranoidPoll(DirectKafkaInputDStream.scala:172)
        at org.apache.spark.streaming.kafka010.DirectKafkaInputDStream.latestOffsets(DirectKafkaInputDStream.scala:191)
        at org.apache.spark.streaming.kafka010.DirectKafkaInputDStream.compute(DirectKafkaInputDStream.scala:228)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:342)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:342)
        at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:341)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:341)
        at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:336)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:334)
        at scala.Option.orElse(Option.scala:289)
        at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:331)
        at org.apache.spark.streaming.dstream.ForEachDStream.generateJob(ForEachDStream.scala:48)
        at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:122)
        at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:121)
        at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
        at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
        at scala.collection.AbstractTraversable.flatMap(Traversable.scala:104)
        at org.apache.spark.streaming.DStreamGraph.generateJobs(DStreamGraph.scala:121)
        at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:249)
        at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:247)
        at scala.util.Try$.apply(Try.scala:192)
        at org.apache.spark.streaming.scheduler.JobGenerator.generateJobs(JobGenerator.scala:247)
        at org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:183)
        at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:89)
        at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:88)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
      

      This can be fixed by allowing the user to specify an

      org.apache.kafka.clients.consumer.ConsumerRebalanceListener

      in the KafkaConsumer#subscribe method.

      The documentation for ConsumerRebalanceListener states that you can use KafkaConsumer#seek with fetched offsets 

      I'm suggesting adding a new ConsumerStrategy that allows users to specify a function to fetch offsets with a Collection of TopicPartitions. The reason for this is to keep the Spark user from having to interact with the Kafka API directly.

        Attachments

          Activity

            People

            • Assignee:
              Unassigned
              Reporter:
              edeesis Ed Mitchell
            • Votes:
              0 Vote for this issue
              Watchers:
              2 Start watching this issue

              Dates

              • Created:
                Updated: