Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Incomplete
-
2.3.2
-
None
Description
I have written a spark streaming consumer to consume the data from Kafka. I found a weird behavior in my logs. The Kafka topic has 3 partitions and for each partition, an executor is launched by Spark Streaming job.I have written a spark streaming consumer to consume the data from Kafka. I found a weird behavior in my logs. The Kafka topic has 3 partitions and for each partition, an executor is launched by Spark Streaming job.
The first executor id always takes the parameters I have provided while creating the streaming context but the executor with ID 2 and 3 always override the kafka parameters.
20/01/14 12:15:05 WARN StreamingContext: Dynamic Allocation is enabled for this application. Enabling Dynamic allocation for Spark Streaming applications can cause data loss if Write Ahead Log is not enabled for non-replayable sour ces like Flume. See the programming guide for details on how to enable the Write Ahead Log. 20/01/14 12:15:05 INFO FileBasedWriteAheadLog_ReceivedBlockTracker: Recovered 2 write ahead log files from hdfs://tlabnamenode/checkpoint/receivedBlockMetadata 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Slide time = 5000 ms 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Storage level = Serialized 1x Replicated 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Checkpoint interval = null 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Remember interval = 5000 ms 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka010.DirectKafkaInputDStream@12665f3f 20/01/14 12:15:05 INFO ForEachDStream: Slide time = 5000 ms 20/01/14 12:15:05 INFO ForEachDStream: Storage level = Serialized 1x Replicated 20/01/14 12:15:05 INFO ForEachDStream: Checkpoint interval = null 20/01/14 12:15:05 INFO ForEachDStream: Remember interval = 5000 ms 20/01/14 12:15:05 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@a4d83ac 20/01/14 12:15:05 INFO ConsumerConfig: ConsumerConfig values: auto.commit.interval.ms = 5000 auto.offset.reset = latest bootstrap.servers = [1,2,3] check.crcs = true client.id = client-0 connections.max.idle.ms = 540000 default.api.timeout.ms = 60000 enable.auto.commit = false exclude.internal.topics = true fetch.max.bytes = 52428800 fetch.max.wait.ms = 500 fetch.min.bytes = 1 group.id = telemetry-streaming-service heartbeat.interval.ms = 3000 interceptor.classes = [] internal.leave.group.on.close = true isolation.level = read_uncommitted key.deserializer = class org.apache.kafka.common.serialization.StringDeserializer
Here is the log for other executors.
20/01/14 12:15:04 INFO Executor: Starting executor ID 2 on host 1 20/01/14 12:15:04 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 40324. 20/01/14 12:15:04 INFO NettyBlockTransferService: Server created on 1 20/01/14 12:15:04 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 20/01/14 12:15:04 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(2, matrix-hwork-data-05, 40324, None) 20/01/14 12:15:04 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(2, matrix-hwork-data-05, 40324, None) 20/01/14 12:15:04 INFO BlockManager: external shuffle service port = 7447 20/01/14 12:15:04 INFO BlockManager: Registering executor with local external shuffle service. 20/01/14 12:15:04 INFO TransportClientFactory: Successfully created connection to matrix-hwork-data-05/10.83.34.25:7447 after 1 ms (0 ms spent in bootstraps) 20/01/14 12:15:04 INFO BlockManager: Initialized BlockManager: BlockManagerId(2, matrix-hwork-data-05, 40324, None) 20/01/14 12:15:19 INFO CoarseGrainedExecutorBackend: Got assigned task 1 20/01/14 12:15:19 INFO Executor: Running task 1.0 in stage 0.0 (TID 1) 20/01/14 12:15:19 INFO TorrentBroadcast: Started reading broadcast variable 0 20/01/14 12:15:19 INFO TransportClientFactory: Successfully created connection to matrix-hwork-data-05/10.83.34.25:38759 after 2 ms (0 ms spent in bootstraps) 20/01/14 12:15:20 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 8.1 KB, free 6.2 GB) 20/01/14 12:15:20 INFO TorrentBroadcast: Reading broadcast variable 0 took 163 ms 20/01/14 12:15:20 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 17.9 KB, free 6.2 GB) 20/01/14 12:15:20 INFO KafkaRDD: Computing topic telemetry, partition 1 offsets 237352170 -> 237352311 20/01/14 12:15:20 INFO CachedKafkaConsumer: Initializing cache 16 64 0.75 20/01/14 12:15:20 INFO CachedKafkaConsumer: Cache miss for CacheKey(spark-executor-telemetry-streaming-service,telemetry,1) 20/01/14 12:15:20 INFO ConsumerConfig: ConsumerConfig values: auto.commit.interval.ms = 5000 auto.offset.reset = none bootstrap.servers = [1,2,3] check.crcs = true client.id = client-0 connections.max.idle.ms = 540000 default.api.timeout.ms = 60000 enable.auto.commit = false exclude.internal.topics = true fetch.max.bytes = 52428800 fetch.max.wait.ms = 500
If we closely observer in the first executor the *auto.offset.reset is latest* but for the other executors the *auto.offset.reset = none*
Here is how I am creating the streaming context
// code placeholderpublic void init() throws Exception { final String BOOTSTRAP_SERVERS = PropertyFileReader.getInstance() .getProperty("spark.streaming.kafka.broker.list"); final String DYNAMIC_ALLOCATION_ENABLED = PropertyFileReader.getInstance() .getProperty("spark.streaming.dynamicAllocation.enabled"); final String DYNAMIC_ALLOCATION_SCALING_INTERVAL = PropertyFileReader.getInstance() .getProperty("spark.streaming.dynamicAllocation.scalingInterval"); final String DYNAMIC_ALLOCATION_MIN_EXECUTORS = PropertyFileReader.getInstance() .getProperty("spark.streaming.dynamicAllocation.minExecutors"); final String DYNAMIC_ALLOCATION_MAX_EXECUTORS = PropertyFileReader.getInstance() .getProperty("spark.streaming.dynamicAllocation.maxExecutors"); final String DYNAMIC_ALLOCATION_EXECUTOR_IDLE_TIMEOUT = PropertyFileReader.getInstance() .getProperty("spark.streaming.dynamicAllocation.executorIdleTimeout"); final String DYNAMIC_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT = PropertyFileReader.getInstance() .getProperty("spark.streaming.dynamicAllocation.cachedExecutorIdleTimeout"); final String SPARK_SHUFFLE_SERVICE_ENABLED = PropertyFileReader.getInstance() .getProperty("spark.shuffle.service.enabled"); final String SPARK_LOCALITY_WAIT = PropertyFileReader.getInstance().getProperty("spark.locality.wait"); final String SPARK_KAFKA_CONSUMER_POLL_INTERVAL = PropertyFileReader.getInstance() .getProperty("spark.streaming.kafka.consumer.poll.ms"); final String SPARK_KAFKA_MAX_RATE_PER_PARTITION = PropertyFileReader.getInstance() .getProperty("spark.streaming.kafka.maxRatePerPartition"); final String SPARK_BATCH_DURATION_IN_SECONDS = PropertyFileReader.getInstance() .getProperty("spark.batch.duration.in.seconds"); final String KAFKA_TOPIC = PropertyFileReader.getInstance().getProperty("spark.streaming.kafka.topic"); LOGGER.debug("connecting to brokers ::" + BOOTSTRAP_SERVERS); LOGGER.debug("bootstrapping properties to create consumer"); kafkaParams = new HashMap<>(); kafkaParams.put("bootstrap.servers", BOOTSTRAP_SERVERS); kafkaParams.put("key.deserializer", StringDeserializer.class); kafkaParams.put("value.deserializer", StringDeserializer.class); kafkaParams.put("group.id", "telemetry-streaming-service"); kafkaParams.put("auto.offset.reset", "latest"); kafkaParams.put("enable.auto.commit", false); kafkaParams.put("client.id", "client-0"); // Below property should be enabled in properties and changed based on // performance testing kafkaParams.put("max.poll.records", PropertyFileReader.getInstance().getProperty("spark.streaming.kafka.max.poll.records")); LOGGER.info("registering as a consumer with the topic :: " + KAFKA_TOPIC); topics = Arrays.asList(KAFKA_TOPIC); sparkConf = new SparkConf() // .setMaster(PropertyFileReader.getInstance().getProperty("spark.master.url")) .setAppName(PropertyFileReader.getInstance().getProperty("spark.application.name")) .set("spark.streaming.dynamicAllocation.enabled", DYNAMIC_ALLOCATION_ENABLED) .set("spark.streaming.dynamicAllocation.scalingInterval", DYNAMIC_ALLOCATION_SCALING_INTERVAL) .set("spark.streaming.dynamicAllocation.minExecutors", DYNAMIC_ALLOCATION_MIN_EXECUTORS) .set("spark.streaming.dynamicAllocation.maxExecutors", DYNAMIC_ALLOCATION_MAX_EXECUTORS) .set("spark.streaming.dynamicAllocation.executorIdleTimeout", DYNAMIC_ALLOCATION_EXECUTOR_IDLE_TIMEOUT) .set("spark.streaming.dynamicAllocation.cachedExecutorIdleTimeout", DYNAMIC_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT) .set("spark.shuffle.service.enabled", SPARK_SHUFFLE_SERVICE_ENABLED) .set("spark.locality.wait", SPARK_LOCALITY_WAIT) .set("spark.streaming.kafka.consumer.poll.ms", SPARK_KAFKA_CONSUMER_POLL_INTERVAL) .set("spark.streaming.kafka.maxRatePerPartition", SPARK_KAFKA_MAX_RATE_PER_PARTITION); LOGGER.debug("creating streaming context with minutes batch interval ::: " + SPARK_BATCH_DURATION_IN_SECONDS); streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(Integer.parseInt(SPARK_BATCH_DURATION_IN_SECONDS))); /* * todo: add checkpointing to the streaming context to recover from driver * failures and also for offset management */ LOGGER.info("checkpointing the streaming transactions at hdfs path :: /checkpoint"); streamingContext.checkpoint("/checkpoint"); streamingContext.addStreamingListener(new DataProcessingListener()); }
public void execute() throws InterruptedException { JavaInputDStream<ConsumerRecord<String, String>> telemetryStream = KafkaUtils.createDirectStream( streamingContext, LocationStrategies.PreferConsistent(), ConsumerStrategies.Subscribe(topics, kafkaParams)); telemetryStream.foreachRDD(rawRDD -> { if (!rawRDD.isEmpty()) { OffsetRange[] offsetRanges = ((HasOffsetRanges) rawRDD.rdd()).offsetRanges(); SparkSession spark = JavaSparkSessionSingleton.getInstance(rawRDD.context().getConf()); JavaPairRDD<String, String> flattenedRawRDD = rawRDD.mapToPair(record -> { ObjectMapper om = new ObjectMapper(); JsonNode root = om.readTree(record.value()); Map<String, JsonNode> flattenedMap = new FlatJsonGenerator(root).flatten(); JsonNode flattenedRootNode = om.convertValue(flattenedMap, JsonNode.class); return new Tuple2<String, String>(flattenedRootNode.get("/name").asText(),flattenedRootNode.toString()); }); Dataset<Row> rawFlattenedDataRDD = spark.createDataset(flattenedRawRDD.rdd(), Encoders.tuple(Encoders.STRING(), Encoders.STRING())).toDF("sensor_path", "sensor_data"); Dataset<Row> groupedDS = rawFlattenedDataRDD.groupBy(col("sensor_path")).agg(collect_list(col("sensor_data").as("sensor_data"))); Dataset<Row> lldpGroupedDS = groupedDS.filter((FilterFunction<Row>) r -> r.getString(0).equals("Cisco-IOS-XR-ethernet-lldp-oper:lldp/nodes/node/neighbors/devices/device")); HashMap<Object, Object> params = new HashMap<>(); params.put(DPConstants.OTSDB_CONFIG_F_PATH, ExternalizedConfigsReader.getPropertyValueFromCache("/opentsdb.config.file.path")); params.put(DPConstants.OTSDB_CLIENT_TYPE, ExternalizedConfigsReader.getPropertyValueFromCache("/opentsdb.client.type")); try { Pipeline lldpPipeline = PipelineFactory.getPipeline(PipelineType.LLDPTELEMETRY); lldpPipeline.process(lldpGroupedDS, null); Pipeline pipeline = PipelineFactory.getPipeline(PipelineType.TELEMETRY); pipeline.process(groupedDS, params); } catch (Throwable t) { t.printStackTrace(); } ((CanCommitOffsets) telemetryStream.inputDStream()).commitAsync(offsetRanges); } }); streamingContext.start(); streamingContext.awaitTermination(); }