Description
Currently, the delimiter option Spark 2.0 to read and split CSV files/data only support a single character delimiter. If we try to provide multiple delimiters, we observer the following error message.
eg: Dataset<Row> df = spark.read().option("inferSchema", "true")
.option("header", "false")
.option("delimiter", ", ")
.csv("C:\test.txt");
Exception in thread "main" java.lang.IllegalArgumentException: Delimiter cannot be more than one character: ,
at org.apache.spark.sql.execution.datasources.csv.CSVUtils$.toChar(CSVUtils.scala:111)
at org.apache.spark.sql.execution.datasources.csv.CSVOptions.<init>(CSVOptions.scala:83)
at org.apache.spark.sql.execution.datasources.csv.CSVOptions.<init>(CSVOptions.scala:39)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat.inferSchema(CSVFileFormat.scala:55)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$8.apply(DataSource.scala:202)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$8.apply(DataSource.scala:202)
at scala.Option.orElse(Option.scala:289)
at org.apache.spark.sql.execution.datasources.DataSource.getOrInferFileFormatSchema(DataSource.scala:201)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:392)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:239)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:227)
at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:596)
at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:473)
Generally, the data to be processed contains multiple character delimiters and presently we need to do a manual data clean up on the source/input file, which doesn't work well in large applications which consumes numerous files.
There seems to be work-around like reading data as text and using the split option, but this in my opinion defeats the purpose, advantage and efficiency of a direct read from CSV file.
Attachments
Issue Links
- is blocked by
-
SPARK-17967 Support for list or other types as an option for datasources
- In Progress
- links to