Summary
While using the KafkaUtils.createRDD API - we receive below listed error, specifically when 1 executor connects to 1 kafka topic-partition, but with more than 1 core & fetches an Array(OffsetRanges)
I've tagged this issue to "Structured Streaming" - as I could not find a more appropriate component
Error Faced
java.util.ConcurrentModificationException: KafkaConsumer is not safe for multi-threaded access
Stack Trace
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 5 in stage 1.0 failed 4 times, most recent failure: Lost task 5.3 in stage 1.0 (TID 17, host, executor 16): java.util.ConcurrentModificationException: KafkaConsumer is not safe for multi-threaded access at org.apache.kafka.clients.consumer.KafkaConsumer.acquire(KafkaConsumer.java:1629) at org.apache.kafka.clients.consumer.KafkaConsumer.close(KafkaConsumer.java:1528) at org.apache.kafka.clients.consumer.KafkaConsumer.close(KafkaConsumer.java:1508) at org.apache.spark.streaming.kafka010.CachedKafkaConsumer.close(CachedKafkaConsumer.scala:59) at org.apache.spark.streaming.kafka010.CachedKafkaConsumer$.remove(CachedKafkaConsumer.scala:185) at org.apache.spark.streaming.kafka010.KafkaRDD$KafkaRDDIterator.<init>(KafkaRDD.scala:204) at org.apache.spark.streaming.kafka010.KafkaRDD.compute(KafkaRDD.scala:181) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
Config Used to simulate the error
A session with :
- Executors - 1
- Cores - 2 or More
- Kafka Topic - has only 1 partition
- While fetching - More than one Array of Offset Range , Example
Array(OffsetRange("kafka_topic",0,608954201,608954202), OffsetRange("kafka_topic",0,608954202,608954203) )
Was this approach working before?
This was working in spark 1.6.2
However, from spark 2.1 onwards - the approach throws exception
Why are we fetching from kafka as mentioned above.
This gives us the capability to establish a connection to Kafka Broker for every spark executor's core, thus each core can fetch/process its own set of messages based on the specified (offset ranges).
Sample Code
scala snippet - on versions spark 2.2.0 or 2.1.0
// Bunch of imports
import kafka.serializer.{DefaultDecoder, StringDecoder}
import org.apache.avro.generic.GenericRecord
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.sql.Row
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.KafkaUtils._
// This forces two connections - from a single executor - to topic-partition <kafka_topic-0>.
// And with 2 cores assigned to 1 executor : each core has a task - pulling respective offsets : OffsetRange("kafka_topic",0,1,2) & OffsetRange("kafka_topic",0,2,3)
val parallelizedRanges = Array(OffsetRange("kafka_topic",0,1,2), // Fetching sample 2 records
OffsetRange("kafka_topic",0,2,3) // Fetching sample 2 records
)
// Initiate kafka properties
val kafkaParams1: java.util.Map[String, Object] = new java.util.HashMap()
// kafkaParams1.put("key","val") add all the parameters such as broker, topic.... Not listing every property here.
// Create RDD
val rDDConsumerRec: RDD[ConsumerRecord[String, String]] =
createRDD[String, String](sparkContext
, kafkaParams1, parallelizedRanges, LocationStrategies.PreferConsistent)
// Map Function
val data: RDD[Row] = rDDConsumerRec.map { x => Row(x.topic().toString, x.partition().toString, x.offset().toString, x.timestamp().toString, x.value() ) }
// Create a DataFrame
val df = sqlContext.createDataFrame(data, StructType(
Seq(
StructField("topic", StringType),
StructField("partition", StringType),
StructField("offset", StringType),
StructField("timestamp", StringType),
StructField("value", BinaryType)
)))
df.show() // You will see the error reported.
Similar Issue reported earlier, but on a different API
A similar issue reported for DirectStream is
https://issues.apache.org/jira/browse/SPARK-19185
What is the impact - if a fix is not available for this problem?
We have a lot of Spark Applications that are running in production, making parallel connections to the 1 topic-partition from each spark-executor: so parallelism is directly proportional to the num-cores in each executor.
With spark 2.1 onwards : we are not allowed to make concurrent connections from 1 executor to 1 topic-partition. Only workaround is to start our applications with executor-cores = 1, with dynamic resource allocation enabled.
With above configuration - for every offset range we ask kafka - a new executor is spawned to run the fetch task.
Downside of Workaround -
Above approach is not allowing us to leverage more than 1 spark-core per spark-executor.
And asking for an executor - for each offset range - is costly : in terms of scheduling and allocation.