Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Incomplete
-
2.1.0
-
None
-
spark-2.1.0-bin-hadoop2.7 Python2
Description
In pyspark, when filtering on a parquet partition column, the following error occurs:
py4j.protocol.Py4JJavaError: An error occurred while calling o54.toString. : java.lang.UnsupportedOperationException: Cannot evaluate expression: <lambda>(input[0, int, true])
Reproduce via the following script:
from pyspark.sql import SparkSession from pyspark.sql.functions import udf from pyspark.sql.types import BooleanType if __name__ == '__main__': sql = SparkSession.builder.getOrCreate() data = [(0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (1, 6)] sql.createDataFrame(data, ['key', 'value'])\ .write\ .partitionBy('key')\ .format('parquet')\ .save('dest.parquet', mode='overwrite') sql.read.parquet('dest.parquet')\ .filter(udf(lambda x: True, BooleanType())('key'))\ .explain(extended=True)
Full script output
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 17/04/28 19:45:41 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Traceback (most recent call last): File "udf_filter_partition_bug.py", line 15, in <module> .explain(extended=True) File "C:\build\env\python-2.7\lib\site-packages\pyspark-2.1.0-py2.7.egg\pyspark\sql\dataframe.py", line 266, in explain print(self._jdf.queryExecution().toString()) File "C:\build\env\python-2.7\lib\site-packages\py4j-0.10.4-py2.7.egg\py4j\java_gateway.py", line 1133, in __call__ answer, self.gateway_client, self.target_id, self.name) File "C:\build\env\python-2.7\lib\site-packages\pyspark-2.1.0-py2.7.egg\pyspark\sql\utils.py", line 63, in deco return f(*a, **kw) File "C:\build\env\python-2.7\lib\site-packages\py4j-0.10.4-py2.7.egg\py4j\protocol.py", line 319, in get_return_value format(target_id, ".", name), value) py4j.protocol.Py4JJavaError: An error occurred while calling o54.toString. : java.lang.UnsupportedOperationException: Cannot evaluate expression: <lambda>(input[0, int, true]) at org.apache.spark.sql.catalyst.expressions.Unevaluable$class.eval(Expression.scala:221) at org.apache.spark.sql.execution.python.PythonUDF.eval(PythonUDF.scala:27) at org.apache.spark.sql.catalyst.expressions.InterpretedPredicate$$anonfun$create$1.apply(predicates.scala:34) at org.apache.spark.sql.catalyst.expressions.InterpretedPredicate$$anonfun$create$1.apply(predicates.scala:34) at org.apache.spark.sql.execution.datasources.PartitioningAwareFileIndex$$anonfun$9.apply(PartitioningAwareFileIndex.scala:174) at org.apache.spark.sql.execution.datasources.PartitioningAwareFileIndex$$anonfun$9.apply(PartitioningAwareFileIndex.scala:173) at scala.collection.TraversableLike$$anonfun$filterImpl$1.apply(TraversableLike.scala:248) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at scala.collection.TraversableLike$class.filterImpl(TraversableLike.scala:247) at scala.collection.TraversableLike$class.filter(TraversableLike.scala:259) at scala.collection.AbstractTraversable.filter(Traversable.scala:104) at org.apache.spark.sql.execution.datasources.PartitioningAwareFileIndex.prunePartitions(PartitioningAwareFileIndex.scala:173) at org.apache.spark.sql.execution.datasources.PartitioningAwareFileIndex.listFiles(PartitioningAwareFileIndex.scala:66) at org.apache.spark.sql.execution.FileSourceScanExec.org$apache$spark$sql$execution$FileSourceScanExec$$selectedPartitions$lzycompute(DataSourceScanExec.scala:159) at org.apache.spark.sql.execution.FileSourceScanExec.org$apache$spark$sql$execution$FileSourceScanExec$$selectedPartitions(DataSourceScanExec.scala:159) at org.apache.spark.sql.execution.FileSourceScanExec$$anonfun$17.apply(DataSourceScanExec.scala:244) at org.apache.spark.sql.execution.FileSourceScanExec$$anonfun$17.apply(DataSourceScanExec.scala:243) at scala.Option.map(Option.scala:146) at org.apache.spark.sql.execution.FileSourceScanExec.<init>(DataSourceScanExec.scala:243) at org.apache.spark.sql.execution.datasources.FileSourceStrategy$.apply(FileSourceStrategy.scala:109) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:62) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:62) at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434) at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440) at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74) at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157) at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157) at scala.collection.Iterator$class.foreach(Iterator.scala:893) at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157) at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1336) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:74) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:66) at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434) at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92) at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:79) at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:75) at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:84) at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:84) at org.apache.spark.sql.execution.QueryExecution$$anonfun$toString$3.apply(QueryExecution.scala:232) at org.apache.spark.sql.execution.QueryExecution$$anonfun$toString$3.apply(QueryExecution.scala:232) at org.apache.spark.sql.execution.QueryExecution.stringOrError(QueryExecution.scala:107) at org.apache.spark.sql.execution.QueryExecution.toString(QueryExecution.scala:232) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:280) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:745)