Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-20530

"Cannot evaluate expression" when filtering on parquet partition column

    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Major
    • Resolution: Incomplete
    • 2.1.0
    • None
    • PySpark
    • spark-2.1.0-bin-hadoop2.7 Python2

    Description

      In pyspark, when filtering on a parquet partition column, the following error occurs:

      py4j.protocol.Py4JJavaError: An error occurred while calling o54.toString.
      : java.lang.UnsupportedOperationException: Cannot evaluate expression: <lambda>(input[0, int, true])
      

      Reproduce via the following script:

      from pyspark.sql import SparkSession
      from pyspark.sql.functions import udf
      from pyspark.sql.types import BooleanType
      
      if __name__ == '__main__':
        sql = SparkSession.builder.getOrCreate()
        data = [(0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (1, 6)]
      
        sql.createDataFrame(data, ['key', 'value'])\
          .write\
          .partitionBy('key')\
          .format('parquet')\
          .save('dest.parquet', mode='overwrite')
      
        sql.read.parquet('dest.parquet')\
          .filter(udf(lambda x: True, BooleanType())('key'))\
          .explain(extended=True)
      

      Full script output

      Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
      Setting default log level to "WARN".
      To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
      17/04/28 19:45:41 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
      SLF4J: Defaulting to no-operation (NOP) logger implementation
      SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
      Traceback (most recent call last):
        File "udf_filter_partition_bug.py", line 15, in <module>
          .explain(extended=True)
        File "C:\build\env\python-2.7\lib\site-packages\pyspark-2.1.0-py2.7.egg\pyspark\sql\dataframe.py", line 266, in explain
          print(self._jdf.queryExecution().toString())
        File "C:\build\env\python-2.7\lib\site-packages\py4j-0.10.4-py2.7.egg\py4j\java_gateway.py", line 1133, in __call__
          answer, self.gateway_client, self.target_id, self.name)
        File "C:\build\env\python-2.7\lib\site-packages\pyspark-2.1.0-py2.7.egg\pyspark\sql\utils.py", line 63, in deco
          return f(*a, **kw)
        File "C:\build\env\python-2.7\lib\site-packages\py4j-0.10.4-py2.7.egg\py4j\protocol.py", line 319, in get_return_value
          format(target_id, ".", name), value)
      py4j.protocol.Py4JJavaError: An error occurred while calling o54.toString.
      : java.lang.UnsupportedOperationException: Cannot evaluate expression: <lambda>(input[0, int, true])
              at org.apache.spark.sql.catalyst.expressions.Unevaluable$class.eval(Expression.scala:221)
              at org.apache.spark.sql.execution.python.PythonUDF.eval(PythonUDF.scala:27)
              at org.apache.spark.sql.catalyst.expressions.InterpretedPredicate$$anonfun$create$1.apply(predicates.scala:34)
              at org.apache.spark.sql.catalyst.expressions.InterpretedPredicate$$anonfun$create$1.apply(predicates.scala:34)
              at org.apache.spark.sql.execution.datasources.PartitioningAwareFileIndex$$anonfun$9.apply(PartitioningAwareFileIndex.scala:174)
              at org.apache.spark.sql.execution.datasources.PartitioningAwareFileIndex$$anonfun$9.apply(PartitioningAwareFileIndex.scala:173)
              at scala.collection.TraversableLike$$anonfun$filterImpl$1.apply(TraversableLike.scala:248)
              at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
              at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
              at scala.collection.TraversableLike$class.filterImpl(TraversableLike.scala:247)
              at scala.collection.TraversableLike$class.filter(TraversableLike.scala:259)
              at scala.collection.AbstractTraversable.filter(Traversable.scala:104)
              at org.apache.spark.sql.execution.datasources.PartitioningAwareFileIndex.prunePartitions(PartitioningAwareFileIndex.scala:173)
              at org.apache.spark.sql.execution.datasources.PartitioningAwareFileIndex.listFiles(PartitioningAwareFileIndex.scala:66)
              at org.apache.spark.sql.execution.FileSourceScanExec.org$apache$spark$sql$execution$FileSourceScanExec$$selectedPartitions$lzycompute(DataSourceScanExec.scala:159)
              at org.apache.spark.sql.execution.FileSourceScanExec.org$apache$spark$sql$execution$FileSourceScanExec$$selectedPartitions(DataSourceScanExec.scala:159)
              at org.apache.spark.sql.execution.FileSourceScanExec$$anonfun$17.apply(DataSourceScanExec.scala:244)
              at org.apache.spark.sql.execution.FileSourceScanExec$$anonfun$17.apply(DataSourceScanExec.scala:243)
              at scala.Option.map(Option.scala:146)
              at org.apache.spark.sql.execution.FileSourceScanExec.<init>(DataSourceScanExec.scala:243)
              at org.apache.spark.sql.execution.datasources.FileSourceStrategy$.apply(FileSourceStrategy.scala:109)
              at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:62)
              at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:62)
              at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
              at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
              at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
              at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
              at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77)
              at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74)
              at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
              at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
              at scala.collection.Iterator$class.foreach(Iterator.scala:893)
              at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
              at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
              at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1336)
              at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:74)
              at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:66)
              at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
              at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
              at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
              at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:79)
              at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:75)
              at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:84)
              at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:84)
              at org.apache.spark.sql.execution.QueryExecution$$anonfun$toString$3.apply(QueryExecution.scala:232)
              at org.apache.spark.sql.execution.QueryExecution$$anonfun$toString$3.apply(QueryExecution.scala:232)
              at org.apache.spark.sql.execution.QueryExecution.stringOrError(QueryExecution.scala:107)
              at org.apache.spark.sql.execution.QueryExecution.toString(QueryExecution.scala:232)
              at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
              at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
              at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
              at java.lang.reflect.Method.invoke(Method.java:497)
              at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
              at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
              at py4j.Gateway.invoke(Gateway.java:280)
              at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
              at py4j.commands.CallCommand.execute(CallCommand.java:79)
              at py4j.GatewayConnection.run(GatewayConnection.java:214)
              at java.lang.Thread.run(Thread.java:745)
      

      Attachments

        Activity

          People

            Unassigned Unassigned
            nivekastoreth James Maki
            Votes:
            1 Vote for this issue
            Watchers:
            2 Start watching this issue

            Dates

              Created:
              Updated:
              Resolved: