Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Fixed
-
1.0.0
Description
When I try to do an Intersect join between a geodataframe that has a column of points, with a geodataframe that holds a single polygon, Spark fails in the case of the first dataframe having no rows in it.
Is there a way to mitigate the error and returning an empty dataframe?
I really don't want to persist and then count to avoid the crash.
line that fails:
df_filtered = spark.sql('SELECT dfg.* from dfg, poly as p where ST_Intersects(dfg.geom, p.geometry)')
The error I get:
Py4JJavaError: An error occurred while calling o2701.showString. : org.apache.spark.sql.catalyst.errors.package$TreeNodeException: execute, tree: Exchange hashpartitioning(geocoding_country#170754, 200), ENSURE_REQUIREMENTS, [id=#6604] +- *(3) HashAggregate(keys=[geocoding_country#170754], functions=[], output=[geocoding_country#170754]) +- *(3) Project [geocoding_country#170754] +- RangeJoin geom#171688: geometry, geometry#74770: geometry, true :- Project [geocoding_country#170754, st_point(cast(longitude#170757 as decimal(24,20)), cast(latitude#170756 as decimal(24,20))) AS geom#171688] : +- *(1) Filter (((((((isnotnull(longitude#170757) AND isnotnull(latitude#170756)) AND isnotnull(geocoding_country#170754)) AND (longitude#170757 >= 2.521799927545686)) AND (longitude#170757 <= 6.374525187000074)) AND (latitude#170756 >= 49.49522288100006)) AND (latitude#170756 <= 51.49623769100005)) AND (geocoding_country#170754 = bobostan)) : +- *(1) ColumnarToRow : +- FileScan parquet [geocoding_country#170754,latitude#170756,longitude#170757] Batched: true, DataFilters: [isnotnull(longitude#170757), isnotnull(latitude#170756), isnotnull(geocoding_country#170754), (l..., Format: Parquet, Location: InMemoryFileIndex[file:/Users/itamar/Downloads/part-00024-eb04d380-134a-402d-90c2-81380003f43e.c000], PartitionFilters: [], PushedFilters: [IsNotNull(longitude), IsNotNull(latitude), IsNotNull(geocoding_country), GreaterThanOrEqual(long..., ReadSchema: struct<geocoding_country:string,latitude:double,longitude:double> +- Exchange RoundRobinPartitioning(1), REPARTITION_WITH_NUM, [id=#6598] +- *(2) Scan ExistingRDD[geometry#74770] at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.doExecute(ShuffleExchangeExec.scala:163) at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180) at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176) at org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525) at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453) at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452) at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.inputRDDs(HashAggregateExec.scala:141) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746) at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180) at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176) at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:321) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:439) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:425) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:47) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3696) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2722) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3687) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3685) at org.apache.spark.sql.Dataset.head(Dataset.scala:2722) at org.apache.spark.sql.Dataset.take(Dataset.scala:2929) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:301) at org.apache.spark.sql.Dataset.showString(Dataset.scala:338) at sun.reflect.GeneratedMethodAccessor173.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:238) at java.lang.Thread.run(Thread.java:748) Caused by: java.lang.Exception: [AbstractSpatialRDD][spatialPartitioning] SpatialRDD boundary is null. Please call analyze() first. at org.apache.sedona.core.spatialRDD.SpatialRDD.spatialPartitioning(SpatialRDD.java:220) at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doSpatialPartitioning(TraitJoinQueryExec.scala:185) at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doSpatialPartitioning$(TraitJoinQueryExec.scala:183) at org.apache.spark.sql.sedona_sql.strategy.join.RangeJoinExec.doSpatialPartitioning(RangeJoinExec.scala:37) at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doExecute(TraitJoinQueryExec.scala:94) at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doExecute$(TraitJoinQueryExec.scala:56) at org.apache.spark.sql.sedona_sql.strategy.join.RangeJoinExec.doExecute(RangeJoinExec.scala:37) at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180) at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176) at org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525) at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453) at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452) at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496) at org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:50) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.inputRDDs(HashAggregateExec.scala:141) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746) at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180) at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD$lzycompute(ShuffleExchangeExec.scala:118) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD(ShuffleExchangeExec.scala:118) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.shuffleDependency$lzycompute(ShuffleExchangeExec.scala:151) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.shuffleDependency(ShuffleExchangeExec.scala:149) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.$anonfun$doExecute$1(ShuffleExchangeExec.scala:166) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) ... 44 more
Attachments
Issue Links
- Blocked
-
SEDONA-60 Failing join if one side has only one row
- Resolved
- links to