Details
-
Improvement
-
Status: Closed
-
Major
-
Resolution: Fixed
-
None
Description
https://github.com/apache/incubator-hudi/issues/1328
So what's going on here is that each entry (single data field) is estimated to be around 500-750 bytes in memory and things spill a lot...
20/02/20 23:00:39 INFO ExternalSpillableMap: Estimated Payload size => 760 for 3675605,HoodieRecord{key=HoodieKey { recordKey=3675605 partitionPath=default}, currentLocation='HoodieRecordLocation {instantTime=20200220225748, fileId=499f8d2c-df6a-4275-9166-3de4ac91f3bf-0}', newLocation='HoodieRecordLocation {instantTime=20200220225921, fileId=499f8d2c-df6a-4275-9166-3de4ac91f3bf-0}'}
INFO HoodieMergeHandle: Number of entries in MemoryBasedMap => 150875 Total size in bytes of MemoryBasedMap => 83886580 Number of entries in DiskBasedMap => 2849125 Size of file spilled to disk => 1067101739
Reproduce steps
export SPARK_HOME=/home/dockeradmin/hudi/spark-2.4.4-bin-hadoop2.7
${SPARK_HOME}/bin/spark-shell \
--executor-memory 6G \
--packages org.apache.hudi:hudi-spark-bundle_2.11:0.5.1-incubating,org.apache.spark:spark-avro_2.11:2.4.4 \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
val HUDI_FORMAT = "org.apache.hudi" val TABLE_NAME = "hoodie.table.name" val RECORDKEY_FIELD_OPT_KEY = "hoodie.datasource.write.recordkey.field" val PRECOMBINE_FIELD_OPT_KEY = "hoodie.datasource.write.precombine.field" val OPERATION_OPT_KEY = "hoodie.datasource.write.operation" val BULK_INSERT_OPERATION_OPT_VAL = "bulk_insert" val UPSERT_OPERATION_OPT_VAL = "upsert" val BULK_INSERT_PARALLELISM = "hoodie.bulkinsert.shuffle.parallelism" val UPSERT_PARALLELISM = "hoodie.upsert.shuffle.parallelism" val config = Map( "table_name" -> "example_table", "target" -> "file:///tmp/example_table/", "primary_key" -> "id", "sort_key" -> "id" ) val readPath = config("target") + "/*"val json_data = (1 to 4000000).map(i => "{\"id\":" + i + "}") val jsonRDD = spark.sparkContext.parallelize(json_data, 2) val df1 = spark.read.json(jsonRDD) println(s"${df1.count()} records in source 1") df1.write.format(HUDI_FORMAT). option(PRECOMBINE_FIELD_OPT_KEY, config("sort_key")). option(RECORDKEY_FIELD_OPT_KEY, config("primary_key")). option(TABLE_NAME, config("table_name")). option(OPERATION_OPT_KEY, BULK_INSERT_OPERATION_OPT_VAL). option(BULK_INSERT_PARALLELISM, 1). mode("Overwrite"). save(config("target"))println(s"${spark.read.format(HUDI_FORMAT).load(readPath).count()} records in Hudi table") // Runs very slow df1.limit(3000000).write.format(HUDI_FORMAT). option(PRECOMBINE_FIELD_OPT_KEY, config("sort_key")). option(RECORDKEY_FIELD_OPT_KEY, config("primary_key")). option(TABLE_NAME, config("table_name")). option(OPERATION_OPT_KEY, UPSERT_OPERATION_OPT_VAL). option(UPSERT_PARALLELISM, 20). mode("Append"). save(config("target")) // Runs very slow df1.write.format(HUDI_FORMAT). option(PRECOMBINE_FIELD_OPT_KEY, config("sort_key")). option(RECORDKEY_FIELD_OPT_KEY, config("primary_key")). option(TABLE_NAME, config("table_name")). option(OPERATION_OPT_KEY, UPSERT_OPERATION_OPT_VAL). option(UPSERT_PARALLELISM, 20). mode("Append"). save(config("target"))println(s"${spark.read.format(HUDI_FORMAT).load(readPath).count()} records in Hudi table")
Analysis
Upsert (4000000 entries)
WARN HoodieMergeHandle: Number of entries in MemoryBasedMap => 150875 Total size in bytes of MemoryBasedMap => 83886580 Number of entries in DiskBasedMap => 3849125 Size of file spilled to disk => 1443046132
Hang stackstrace (DiskBasedMap#get)
"pool-21-thread-2" Id=696 cpuUsage=98% RUNNABLE at java.util.zip.ZipFile.getEntry(Native Method) at java.util.zip.ZipFile.getEntry(ZipFile.java:310) - locked java.util.jar.JarFile@1fc27ed4 at java.util.jar.JarFile.getEntry(JarFile.java:240) at java.util.jar.JarFile.getJarEntry(JarFile.java:223) at sun.misc.URLClassPath$JarLoader.getResource(URLClassPath.java:1005) at sun.misc.URLClassPath.getResource(URLClassPath.java:212) at java.net.URLClassLoader$1.run(URLClassLoader.java:365) at java.net.URLClassLoader$1.run(URLClassLoader.java:362) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:361) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) - locked java.lang.Object@28f65251 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331) at java.lang.ClassLoader.loadClass(ClassLoader.java:411) - locked scala.reflect.internal.util.ScalaClassLoader$URLClassLoader@a353dff at java.lang.ClassLoader.loadClass(ClassLoader.java:411) - locked com.esotericsoftware.reflectasm.AccessClassLoader@2c7122e2 at com.esotericsoftware.reflectasm.AccessClassLoader.loadClass(AccessClassLoader.java:92) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) at com.esotericsoftware.reflectasm.ConstructorAccess.get(ConstructorAccess.java:59) - locked com.esotericsoftware.reflectasm.AccessClassLoader@2c7122e2 at org.apache.hudi.common.util.SerializationUtils$KryoInstantiator$KryoBase.lambda$newInstantiator$0(SerializationUtils.java:151) at org.apache.hudi.common.util.SerializationUtils$KryoInstantiator$KryoBase$$Lambda$265/1458915834.newInstance(Unknown Source) at com.esotericsoftware.kryo.Kryo.newInstance(Kryo.java:1139) at com.esotericsoftware.kryo.serializers.FieldSerializer.create(FieldSerializer.java:562) at com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:538) at com.esotericsoftware.kryo.Kryo.readObject(Kryo.java:731) at com.esotericsoftware.kryo.serializers.ObjectField.read(ObjectField.java:125) at com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:543) at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:813) at org.apache.hudi.common.util.SerializationUtils$KryoSerializerInstance.deserialize(SerializationUtils.java:112) at org.apache.hudi.common.util.SerializationUtils.deserialize(SerializationUtils.java:86) at org.apache.hudi.common.util.collection.DiskBasedMap.get(DiskBasedMap.java:217) at org.apache.hudi.common.util.collection.DiskBasedMap.get(DiskBasedMap.java:211) at org.apache.hudi.common.util.collection.DiskBasedMap.get(DiskBasedMap.java:207) at org.apache.hudi.common.util.collection.ExternalSpillableMap.get(ExternalSpillableMap.java:173) at org.apache.hudi.common.util.collection.ExternalSpillableMap.get(ExternalSpillableMap.java:55) at org.apache.hudi.io.HoodieMergeHandle.write(HoodieMergeHandle.java:280) at org.apache.hudi.table.HoodieCopyOnWriteTable$UpdateHandler.consumeOneRecord(HoodieCopyOnWriteTable.java:434) at org.apache.hudi.table.HoodieCopyOnWriteTable$UpdateHandler.consumeOneRecord(HoodieCopyOnWriteTable.java:424) at org.apache.hudi.common.util.queue.BoundedInMemoryQueueConsumer.consume(BoundedInMemoryQueueConsumer.java:37) at org.apache.hudi.common.util.queue.BoundedInMemoryExecutor.lambda$null$2(BoundedInMemoryExecutor.java:121) at org.apache.hudi.common.util.queue.BoundedInMemoryExecutor$$Lambda$76/1412692041.call(Unknown Source) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745)
Average time of DiskBasedMap#get
$ monitor *DiskBasedMap get -c 12
Affect(class-cnt:1 , method-cnt:4) cost in 221 ms.
timestamp class method total success fail avg-rt(ms) fail-rate
----------------------------------------------------------------------------------------
2020-02-20 18:13:36 DiskBasedMap get 5814 5814 0 6.12 0.00%
timestamp class method total success fail avg-rt(ms) fail-rate
----------------------------------------------------------------------------------------
2020-02-20 18:13:48 DiskBasedMap get 9117 9117 0 3.89 0.00%
timestamp class method total success fail avg-rt(ms) fail-rate
----------------------------------------------------------------------------------------
2020-02-20 18:14:16 DiskBasedMap get 8490 8490 0 4.10 0.00%
Call time strace:
thread-2;id=194;is_daemon=false;priority=5;TCCL=org.apache.spark.repl.ExecutorClassLoader@7a47bc29 `---[4.361707ms] org.apache.hudi.common.util.collection.DiskBasedMap:get() +---[0.001704ms] java.util.Map:get() `---[4.344261ms] org.apache.hudi.common.util.collection.DiskBasedMap:get() `---[4.328981ms] org.apache.hudi.common.util.collection.DiskBasedMap:get() +---[0.00122ms] org.apache.hudi.common.util.collection.DiskBasedMap:getRandomAccessFile() `---[4.313586ms] org.apache.hudi.common.util.collection.DiskBasedMap:get() `---[4.283509ms] org.apache.hudi.common.util.collection.DiskBasedMap:get() +---[0.001169ms] org.apache.hudi.common.util.collection.DiskBasedMap$ValueMetadata:getOffsetOfValue() +---[7.1E-4ms] java.lang.Long:longValue() +---[6.97E-4ms] org.apache.hudi.common.util.collection.DiskBasedMap$ValueMetadata:getSizeOfValue() +---[0.036483ms] org.apache.hudi.common.util.SpillableMapUtils:readBytesFromDisk() `---[4.201996ms] org.apache.hudi.common.util.SerializationUtils:deserialize()
Kryo deserialize performance test
import org.apache.avro.Schema; import org.apache.avro.generic.GenericData; import org.apache.avro.generic.GenericRecord; import java.util.LinkedList; import java.util.List; import java.util.Random; /** * Test serialization. */ public class TestSerializationUtils { public static final String TRIP_EXAMPLE_SCHEMA = "{\"type\": \"record\"," + "\"name\": \"triprec\"," + "\"fields\": [ " + "{\"name\": \"timestamp\",\"type\": \"double\"}," + "{\"name\": \"_row_key\", \"type\": \"string\"}," + "{\"name\": \"rider\", \"type\": \"string\"}," + "{\"name\": \"driver\", \"type\": \"string\"}," + "{\"name\": \"begin_lat\", \"type\": \"double\"}," + "{\"name\": \"begin_lon\", \"type\": \"double\"}," + "{\"name\": \"end_lat\", \"type\": \"double\"}," + "{\"name\": \"end_lon\", \"type\": \"double\"}," + "{\"name\": \"fare\",\"type\": {\"type\":\"record\", \"name\":\"fare\",\"fields\": [" + "{\"name\": \"amount\",\"type\": \"double\"},{\"name\": \"currency\", \"type\": \"string\"}]}}," + "{\"name\": \"_hoodie_is_deleted\", \"type\": \"boolean\", \"default\": false} ]}"; public static final Schema AVRO_SCHEMA = new Schema.Parser().parse(TRIP_EXAMPLE_SCHEMA); public static GenericRecord generateGenericRecord() { Random RAND = new Random(46474747); GenericRecord rec = new GenericData.Record(AVRO_SCHEMA); rec.put("_row_key", "rowKey"); rec.put("timestamp", "timestamp"); rec.put("rider", "riderName"); rec.put("driver", "driverName"); rec.put("begin_lat", RAND.nextDouble()); rec.put("begin_lon", RAND.nextDouble()); rec.put("end_lat", RAND.nextDouble()); rec.put("end_lon", RAND.nextDouble()); rec.put("_hoodie_is_deleted", false); return rec; } public static void main(String[] args) throws Exception { GenericRecord genericRecord = generateGenericRecord(); byte[] serializedObject = SerializationUtils.serialize(genericRecord); List<Object> datas = new LinkedList<>(); long t1 = System.currentTimeMillis(); for (int i = 0; i < 1000; i++) { datas.add(SerializationUtils.<GenericRecord>deserialize(serializedObject)); } long t2 = System.currentTimeMillis(); System.out.println("dese times: " + datas.size()); System.out.println("dese cost: " + (t2 - t1) + "ms"); } }