Description
This simple query give wrong result , when , i use the parallel order .
select count(*) , count(distinct dummyint ) , min(dummyint),max(dummyint) from foobar_1M ;
Current wrong result :
c0 c1 c2 c3 32740 32740 0 163695 113172 113172 163700 729555 54088 54088 729560 999995
Right result :
c0 c1 c2 c3 1000000 1000000 0 999999
The sql script for my test
drop table foobar_1 ; create table foobar_1 ( dummyint int , dummystr string ) ; insert into table foobar_1 select count(*),'dummy 0' from foobar_1 ; drop table foobar_1M ; create table foobar_1M ( dummyint bigint , dummystr string ) ; insert overwrite table foobar_1M select val_int , concat('dummy ',val_int) from ( select ((((((d_1*10)+d_2)*10+d_3)*10+d_4)*10+d_5)*10+d_6) as val_int from foobar_1 lateral view outer explode(split("0,1,2,3,4,5,6,7,8,9",",")) tbl_1 as d_1 lateral view outer explode(split("0,1,2,3,4,5,6,7,8,9",",")) tbl_2 as d_2 lateral view outer explode(split("0,1,2,3,4,5,6,7,8,9",",")) tbl_3 as d_3 lateral view outer explode(split("0,1,2,3,4,5,6,7,8,9",",")) tbl_4 as d_4 lateral view outer explode(split("0,1,2,3,4,5,6,7,8,9",",")) tbl_5 as d_5 lateral view outer explode(split("0,1,2,3,4,5,6,7,8,9",",")) tbl_6 as d_6 ) as f ; set hive.optimize.sampling.orderby.number=10000; set hive.optimize.sampling.orderby.percent=0.1f; set mapreduce.job.reduces=3 ; set hive.optimize.sampling.orderby=false; select count(*) , count(distinct dummyint ) , min(dummyint),max(dummyint) from foobar_1M ; set hive.optimize.sampling.orderby=true; select count(*) , count(distinct dummyint ) , min(dummyint),max(dummyint) from foobar_1M ;