Details
-
Bug
-
Status: Resolved
-
Critical
-
Resolution: Fixed
-
1.18.0
-
Description
Per our discussion in Slack/Dev-list Here are all details and sample data-set to recreate problematic query behavior:
- We are using Drill 1.18.0-SNAPSHOT built on March 6
- We are joining on two small Parquet datasets residing on S3 using the following query:
SELECT CASE WHEN tbl1.`timestamp` IS NULL THEN tbl2.`timestamp` ELSE tbl1.`timestamp` END AS ts, * FROM `s3-store.state.`/164` AS tbl1 FULL OUTER JOIN `s3-store.result`.`/164` AS tbl2 ON tbl1.`timestamp`*10 = tbl2.`timestamp` ORDER BY ts ASC LIMIT 500 OFFSET 0 ROWS
- We are running drill in a single node setup on a 16 core, 64GB ram machine. Drill heap size is set to 16GB, while max direct memory is set to 32GB.
- As the dataset consist of really small files, Drill has been tweaked to parallelize on small item count by tweaking the following variables:
planner.slice_target = 25 planner.width.max_per_node = 16 (to match the core count)
- Without the above parallelization, query speeds on parquet files are super slow (tens of seconds)
- While queries do work, we are seeing non-proportional direct memory/heap utilization. (up 20GB of direct memory used, a min of 12GB heap required)
- We're still encountering the occasional OOM of memory error (we're also seeing heap exhaustion, but I guess that's another indication to same problem. Reducing the node parallelization width to say, 8, reduces memory contention, though it still reaches 8 gb of direct memory
User Error Occurred: One or more nodes ran out of memory while executing the query. (null) org.apache.drill.common.exceptions.UserException: RESOURCE ERROR: One or more nodes ran out of memory while executing the query.null[Error Id: 67b61fc9-320f-47a1-8718-813843a10ecc ] at org.apache.drill.common.exceptions.UserException$Builder.build(UserException.java:657) at org.apache.drill.exec.work.fragment.FragmentExecutor.run(FragmentExecutor.java:338) at org.apache.drill.common.SelfCleaningRunnable.run(SelfCleaningRunnable.java:38) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.drill.exec.exception.OutOfMemoryException: null at org.apache.drill.exec.vector.complex.AbstractContainerVector.allocateNew(AbstractContainerVector.java:59) at org.apache.drill.exec.test.generated.PartitionerGen5$OutgoingRecordBatch.allocateOutgoingRecordBatch(PartitionerTemplate.java:380) at org.apache.drill.exec.test.generated.PartitionerGen5$OutgoingRecordBatch.initializeBatch(PartitionerTemplate.java:400) at org.apache.drill.exec.test.generated.PartitionerGen5.setup(PartitionerTemplate.java:126) at org.apache.drill.exec.physical.impl.partitionsender.PartitionSenderRootExec.createClassInstances(PartitionSenderRootExec.java:263) at org.apache.drill.exec.physical.impl.partitionsender.PartitionSenderRootExec.createPartitioner(PartitionSenderRootExec.java:218) at org.apache.drill.exec.physical.impl.partitionsender.PartitionSenderRootExec.innerNext(PartitionSenderRootExec.java:188) at org.apache.drill.exec.physical.impl.BaseRootExec.next(BaseRootExec.java:93) at org.apache.drill.exec.work.fragment.FragmentExecutor$1.run(FragmentExecutor.java:323) at org.apache.drill.exec.work.fragment.FragmentExecutor$1.run(FragmentExecutor.java:310) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1730) at org.apache.drill.exec.work.fragment.FragmentExecutor.run(FragmentExecutor.java:310) ... 4 common frames omitted
I've attached a (real!) sample data-set to match the query above. That same dataset recreates the aforementioned memory behavior
Help, please.
Idan
Attachments
Attachments
Issue Links
- is related to
-
DRILL-7686 Excessive memory use in partition sender
- Open
-
DRILL-7687 Inaccurate memory estimates in hash join
- Open
- links to